Optimization methods

NOPT048

Jirka Fink

https://ktiml.mff.cuni.cz/~fink/

Department of Theoretical Computer Science and Mathematical Logic
Faculty of Mathematics and Physics
Charles University in Prague

Summer semester 2017/18

Last change on May 22, 2018

License: Creative Commons BY-NC-SA 4.0

Jirka Fink Optimization methods 1

Jirka Fink: Optimization methods

General information
E-mail fink@ktiml.mff.cuni.cz
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Consultations Individual schedule

Examination

@ Tutorial conditions
o Tests
o Theoretical homeworks
@ Practical homeworks

@ Pass the exam
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° Linear programming
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Matrix notation of the linear programming problem

Formulation using linear programming

Minimize 0.75x; + 0.5x2 + 0.15x3

subjectto 35x; + 05x. + 05x3 > 05
60x; + 300x2 + 10x3 > 15

30xi + 20x2 + 10x3 > 4

X1,X2,X3 > 0

Matrix notation
@ Minimize
0.75\ " /x1
0.5 X2
0.15 X3
35 05 05 X1 0.5
60 300 10 X2 | > | 15
30 20 10 X3 4
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@ Subject to

@ and x1,X2,X3 >0

Jirka Fink: Optimization methods

Plan of the lecture

@ Linear and integer optimization

@ Convex sets and Minkowski-Wey! theorem
@ Simplex methods

Duality of linear programming

Ellipsoid method

Unimodularity

Minimal weight maximal matching

Matroid

Cut and bound method
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Jirka Fink: Optimization methods
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Example of linear programming: Optimized diet

Express using linear programming the following problem

Find the cheapest vegetable salad from carrots, white cabbage and cucumbers
containing required amount the vitamins A and C and dietary fiber.

Food Carrot  White cabbage Cucumber | Required per meal
Vitamin A [mg/kg] 35 0.5 0.5 0.5 mg
Vitamin C [mg/kg] 60 300 10 15 mg
Dietary fiber [g/kg] 30 20 10 49
Price [EUR/kg] 0.75 0.5 0.15
Formulation using linear programming
Carrot White cabbage Cucumber
Minimize  0.75x1 + 0.5x2 + 0.15x3 Cost
subjectto  35x4 + 0.5x2 + 0.5x3 > 0.5 Vitamin A
60x1  + 300x> + 10x3 > 15 VitaminC
30x4 + 20x2 + 10x3 > 4 Dietary fiber
X1,X2,X3 > 0

Notation: Vector and matrix

A scalar is a real number. Scalars are written as a, b, ¢, etc. I

A vector is an n-tuple of real numbers. Vectors are written as ¢, x, y, etc. Usually,
vectors are column matrices of type n x 1.

A matrix of type m x nis a rectangular array of m rows and n columns of real numbers.
Matrices are written as A, B, C, etc.

Special vectors
0 and 1 are vectors of zeros and ones, respectively.

Transpose

The transpose of a matrix A is matrix AT created by reflecting A over its main diagonal.
The transpose of a column vector x is the row vector x".
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Matrix product

Notatio! tem of linear equations and inequalities

l
|
—
Q
=

Elements of a vector and a matrix
@ The i-th element of a vector x is denoted by X;.
@ The (i,j)-th element of a matrix A is denoted by A, ;.
@ The i-th row of a matrix A is denoted by A; ..
@ The j-th column of a matrix A is denoted by A, ;.

Equality and inequality of two vectors

For vectors x, y € R” we denote
o x=yifx;=y foreveryi=1,...,nand
o x<yifx;<yforeveryi=1,...,n.

System of linear equations

Given a matrix A € R™*" of type m x nand a vector b € R”, the formula Ax = b
means a system of m linear equations where x is a vector of n real variables.

System of linear inequalities

Given a matrix A € R™*" of type and a vector b € R, the formula Ax < b means a
system of m linear inequalities where x is a vector of n real variables.

Dot product of vectors

The dot product (also called inner product or scalar product) of vectors x,y € R” is the
scalar x"y = 37, Xy,

Product of a matrix and a vector

The product Ax of a matrix A € R™*" of type m x n and a vector x € R” is a vector
y €R"suchthaty, = Aj.xforalli=1,...,m.

Example: System of linear inequalities in two different notations

Product of two matrices X4
The product AB of a matrix A € R™" and a matrix B € R™* a matrix C € R™** such 2X1 + X2 + X3 < 14 <§ 15 ;) X2 | < (;g)
that C, ; = AB, forall j=1,... k. 21+ 5%z + S5x3 < 30 X3
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Linear Programming

Optimization

||

Mathematical optimization
Mathematical optimization is the selection of a best element (with regard to some

Linear programming problem

criteria) from some set of available alternatives.

Examples
@ Minimize x* + y® where (x, y) € R?
@ Maximal matching in a graph
@ Minimal spanning tree

A linear program is the problem of maximizing (or minimizing) a given linear function
over the set of all vectors that satisfy a given system of linear equations and
inequalities.

Equation form: min¢"x subject to Ax = b, x >0

Canonical form: max c"x subject to Ax < b,

wherec e R, beR", Ac R™"ax e R".

@ Shortest path between given two vertices

Optimization problem

Conversion from the equation form to the canonical form

Given a set of solutions M and an objective function f : M — R, optimization problem is
finding a solution x € M with the maximal (or minimal) objective value f(x) among all
solutions of M.

max —c"x subject to Ax < b, —Ax < —b, —x <0

Conversion from the canonical form to the equation form

Duality between minimization and maximization
T

If mingewm f(x) exists, then also maxyem —f(x) exists and min —c"x’ 4+ ¢"x” subject to Ax’ — Ax” + Ix"" = b, x',x",x"" >0
— Minyem F(X) = Maxyey —f(x).
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Example of linear programming: Network flow

Network flow problem

Given a direct graph (V, E) with capacities ¢ € RF and a source s € V and a sink
t € V, find the maximal flow from s to t satisfying the flow conservation and capacity
@ Number of variables: n constrains.

@ Number of constrains: m
Formulation using linear programming

@ Solution: an arbritrary vector x of R”
Variables: Flow x. for every edge e € E
Capacity constrains: 0 < x < ¢
Flow conservation: 3=, c g Xuv = 3, Xww for every v e V\ {s, t}
Objective function: Maximize >, . Xsw — Y jsc g Xus

Terminology

Basic terminology

@ Objective function: a function to be minimized or maximized, e.g. max ¢'x
@ Feasible solution: a solution satisfying all constrains, e.g. Ax < b

@ Optimal solution: a feasible solution maximizing ¢"x

@ Infeasible problem: a problem having no feasible solution

@ Unbounded problem: a problem having a feasible solution with arbitrary large
value of given objective function

@ Polyhedron: a set of points x € R” satisfying Ax < b for some A € R™" and
beR™

@ Polytope: a bounded polyhedron

Matrix notation
e Add an auxiliary edge x;s with a sufficiently large capacity ¢s
Objective function: max X:s
Flow conservation: Ax = 0 where A is the incidence matrix
Capacity constrains: x <candx >0
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Graphical method: Set of feasible solutions

Draw the set of all feasible solutions (x1,x2) satisfying the following conditions.
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Graphical method: Optimal solution

Find the optimal solution of the following problem.

X1 + 6x2 < 15 Maximize x;y + X2
4x; — x2 < 10 Xi + 6xa < 15
—X1 + X2 < 1 4x; — xo < 10
X1,X2 > X1 + X2 < 1
— Xi,X2 > 0
Souion Solution
\X‘ZO “J‘Q_X‘S1 Fri=5

@r=1l

X1 +6x2 < 15 'x =0

— | \%
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Graphical method: Multiple optimal solutions

Find all optimal solutions of the following problem.

Maximize ix1 + Xz

X1 + 6x2 < 15
4x7 — X2 < 10
X1 + X2 < 1

Xi,X2 > 0

/;:’V(o, m /
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Graphical method: Infeasible problem

Show that the following problem has no feasible solution.
Maximize x; + X2
X1 + X2 < -2
X1,X2 > 0
Solution
X1 >0 § o=zl
(0,0)

Example of integer linear programming: Vertex cover

Vertex cover problem

Given an undirected graph (V, E), find the smallest set of vertices U C V covering
every edge of E; thatis, UU e # 0 forevery e € E.

Formulation using integer linear programming

Variables: Cover x, € {0, 1} for every vertex v € V
Covering: Xy + Xy > 1 for every edge uv € E
Objective function: Minimize 37 _, xv

Matrix notation
Variables: Cover x € {0,1 }V (i.e.0<x<1andx e Z")
Covering: A'x > 1 where A s the incidence matrix
Objective function: Minimize 17x
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Example: Ice cream production planning

Problem description

@ An ice cream manufacturer needs to plan production of ice cream for next year
@ The estimated demand of ice cream for month i € {1,..., n} is d; (in tons)

@ Price for storing ice cream is a per ton and month

@ Changing the production by 1 ton from month i — 1 to month i cost b

@ Produced ice cream cannot be stored longer than one month

@ The total cost has to be minimized
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Graphical method: Unbounded problem

Show that the following problem is unbounded.

Maximize x; + X2
—X1 + X2
X1, X2

IV IA
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Related problems

Integer linear programming

Integer linear programming problem is an optimization problem to find x € Z" which
maximizes ¢"x and satisfies Ax < b where A € R"*" and b € R".

Mix integer linear programming
Some variables are integer and others are real.

Binary linear programming

Every variable is either 0 or 1.

@ A linear programming problem is efficiently solvable, both in theory and in practice.

@ The classical algorithm for linear programming is the Simplex method which is fast
in practice but it is not known whether it always run in polynomial time.

@ Polynomial time algorithms are ellipsoid and interior point methods.

@ No strongly polynomial-time algorithms for linear programming is known.

@ Integer linear programming is NP-hard.

Relation between optimal integer and relaxed solution

Non-empty polyhedron may not contain an integer solution

° ° ° °

° Relaxed optimum

° ° ° ° ° ° °
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Example: Ice cream production planning

@ Variable x; determines the amount of produced ice cream in month i € {0, ..., n}
@ Variable s; determines the amount of stored ice cream from month i — 1 month i
@ The stored quantity is computed by s; = s;_1 + x; —d; forevery i € {1,...,n}

© Durability is ensured by s; < d, forall i € {1,...,n}

@ Non-negativity of the production and the storage x,s > 0

Q Objective function minbY"7 , |x; — Xi—1| +ad>_}_, si is non-linear

@ We introduce variables y; for i € {1, ..., n} to avoid the absolute value

@ Linear programming problem formulation

Minimize bY ", y,+aX",si

subject to si1—8i+x; = d; forie{l,...
si < d; forie{l,...
Xi—Xi—1—y;, < 0 forie{l,...,
—Xi+Xi1—y;, < 0 forie{d,...
x,s,y > 0

@ We can bound the initial and final amount of ice cream s, a s,
@ and also bound the production xo
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Finding shortest paths from a vertex s in an oriented graph

Shortest path problem

Given an oriented graph (V, E) with length of edges ¢ € Z" and a starting vertex s, find
the length of a shortest path from s to all vertices.

Linear programming problem

Maximize 37 ., Xu
subjectto Xy — Xy
Xs

cw for every edge uv
0

I IA

A\,

Proof (optimal solution x}; of LP gives the distance from s to u for Vu € V)

@ Let y, be the length of a shortest path from s to u

@ Itholds thaty > x*

o Let P be edges on the shortest path from sto z

© Y= uwepCuw = Yyep Xy —Xi =X; — Y5 =X;
Q@ Itholds thaty = x*

o For the sake of contradiction assume that y # x*

e Soy>x*and 3, ¥y > ey Xh

o But y is a feasible solution and x* is an optimal solution
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Linear space
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Definition: Linear (vector) space

A set (V,+,-) is called a linear (vector) space over a field T if
+:V x V — Vie. Vis closed under addition +

@ -: T xV— Vie. Visclosed under multiplication by T
@ (V,+)is an Abelian group

@ Forevery x € Vitholdsthat1-x =xwhere 1 € T

o

o

)

For every a,b € T and every x € V it holds that (ab) - x = a- (b - x)
For every a,b € T and every x € V itholds that (a+ b) - x =a-x+b-x
Foreveryac T andevery x,y € Vitholdsthata- (x +y)=a-x+a-y

Observation

If V is a linear space and L C V, then L is a linear space if and only if
e0clL,
@ x+yelLforeveryx,y € Land
@ axc Lforeveryx c Landa € T.
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@ By definition, L = V + a for some linear space V and some vector a € R".
Observe that L — x = V + (a— x) and we prove that V + (a — x) = V which
implies that L — x is a linear space. There exists y € V suchthatx =y + a.
Hence,a—x=a—y —a= —y € V. Since V is closed under addition, it follows
that V + (a— x) C V. Similarly, V — (a — x) C V which implies that
V C V+(a—x). Hence, V = V + (a — x) and the statement follows.

© We proved that L = V + a for some linear space V C R” and some vector a € R”
andL—-x=V+(a—x)=Vioreveryxec L So,L—x=V=L-y.

@ Every linear space must contain the origin by definition. For the opposite
implication, we set x = 0 and apply the previous statement.

Q If Vis alinear space, then we can obtain rows of A from the basis of the
orthogonal space of V.

@ If Lis an affine space, then L = V + a for some vector space V and some vector a
and there exists a matrix A such that V = {x; Ax = 0}. Hence,

V+a={x+a Ax=0} ={y; Ay — Aa=0} = {y; Ay = b} where we
substitute x + a =y and set b = Aa.

If L = {x; Ax = b} is non-empty, then let y be an arbitrary vertex of L.
Furthermore, L—y = {x —y; Ax =b} = {z; Ay + Az=b} = {z;, Az=0}isa
linear space since Ay = b.
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Linear, affine and convex hulls

»
2

Observation
@ The intersection of linear spaces is also a linear space. ®
@ The non-empty intersection of affine spaces is an affine space. ®
@ The intersection of convex sets is also a convex set. ®

| \

Definition
Let S C R” be an non-empty set.
@ The linear hull span(S) of S is the intersection of all linear sets containing S.
@ The affine hull aff(S) of S is the intersection of all affine sets containing S.
@ The convex hull conv(S) of S is the intersection of all convex sets containing S.

Observation

Let S C R” be an non-empty set.
o Aset Sis linear if and only if S = span(S). ®
o Aset Sis affine if and only if S = aff(S). ®
@ Aset Sis convex if and only if S = conv(S). ®
@ span(S) = aff(SuU {0})
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Outline

9 Linear, affine and convex sets
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Linear and affine spaces in R"

Observation

A non-empty set V C R" is a linear space if and only if ax + gy € V forall o, B € R,
x,yeV.

Definition
If V C R"is alinear space and a € R" is a vector, then V + ais called an affine space
where V+a={x+a, xc V}.

Basic observations

e If L C R"is an affine space, then L + x is an affine space for every x € R".
@ If L C R"is an affine space, then L — x is a linear space for every x € L. ©
o If L C R"is an affine space, then L—x = L —y forevery x,y € L. ®

@ An affine space L C R” is linear if and only if L contains the origin 0. ®

System of linear equations

@ The set of all solutions of Ax =0 is a linear space and every linear space is the
set of all solutions of Ax = 0 for some A. ®

@ The set of all solutions of Ax = b is an affine space and every affine space is the
set of all solutions of Ax = b for some A and b, assuming Ax = b is consistent. ®
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Convex set

Observation (Exercise)

A set S C R" is an affine space if and only if S contains whole line given every two
points of S.

Definition
A set S C R"is convex if S contains whole segment between every two points of S.

a
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@ Use definition and logic.

@ Let L, be affine space for i in an index set / and L = Nj¢,L; and a € L. We proved
that L —a = ,,,(Li — &) is a linear space which implies that L is an affine space.

@ Use definition and logic.

@ Similar as the convex version.

@ Similar as the convex version.

@ We proved that conv(S) is convex, so if S = conv(S), then S is convex. In order to
prove that S = conv(S) if S is convex, we observe that conv(S) C S since
conV(S) = Nyos.mcomvex M @nd S is included in this intersection. Similarly,
conv(S) 2 S since every M in the intersection contains S.

Jirka Fink Optimization methods 30



Linear, affine and convex combinations

Let v1,..., vk be vectors of R” where k is a positive integer.
@ The sum ZL a;v; is called a linear combination if oy, ..., ok € R.
@ The sum XX, a;v; is called an affine combination if a1, ..., ax € R, K o = 1.
@ The sum ZL a;V; is called a convex combination if a4, . .., ax > 0 and
ZL o= 1. y
Lemma

Let S C R” be a non-empty set.
@ The set of all linear combinations of S is a linear space. ®
@ The set of all affine combinations of S is an affine space. ®
@ The set of all convex combinations of S is a convex set. ®

@ Alinear space S contains all linear combinations of S. @
@ An affine space S contains all affine combinations of S. ®
@ A convex set S contains all convex combinations of S. ®
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thaty .= Yk, T-L-v; is a convex combination of k — 1 vectors of S which by

induction belongs to S. Furthermore, (1 — ax)y + ax Vi is @ convex combination of
S which by induction also belongs to S.
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@ Similar as the convex version.
@ Similar as the convex version.

@ Let T be the set of all convex combinations of S. First, we prove that conv(S) C T.
The definition states that conv(S) = (5 1 convex M @Nd We proved that T is a
convex set containing S, so T is included in this intersection which implies that
conv(S) is a subset of T.

In order to prove conv(S) D T, we again consider the intersection

conv(S) = Nyos.mconvex M- We proved that a convex set M contains all convex
combinations of M which implies that if M O S then M also contains all convex
combinations of S. So, in this intersection every M contains T which implies that

conv(S) D T.
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@ If vectors vqi — vq, ..., Vi — Vo are linearly dependent, then there exists a
non-trivial combination a4, ..., ax € R such that Zf:‘ aj(vi — vo) = 0. In this
case,0 = YK ai(vi— vo) = X5, aivi — v XK, ai = S5 ayv; is & non-trivial
affine combination with 3% o = 0 where ap = — 3k, a.
If vo, ..., vk € R" are affinely dependent, then there exists a non-trivial

combination ao, . .., ax € R such that - j a;v; = 0 a i a; = 0. In this case,
0="3% aivi=aovo+ X5, aivi = X, ai(vi — vo) is a non-trivial linear
combination of vectors vy — vy, .. Vo.

@ Use the previous observation with v = 0.
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@ We have to verify that the set of all linear combinations has closure under addition
and multiplication by scalars. In order to verify the closure under multiplication, let
Sk, a;v; be a linear combination of S and ¢ € R be a scalar. Then,

e aivi = Y, (caj)v; is a linear combination of of S. Similarly, the set of all
linear combinations has closure under addition and it contains the origin.

@ Similar as the convex version: Show that S contains whole line defined by
arbitrary pair of points of S.

Q Let >°F, ayu; and Z/’.ﬂ Bjv; be two convex combinations of S. In order to prove
that the set of all convex combinations of S contains the line segment between
>k aju;and Z/I':1 Bivj, let us consider 1,72 > 0 such that 41 +v2 = 1. Then,
N il + 72 Yy BV = S (yea)u; + i (123)v; is a convex
combination of S since (y1a;), (v26;) > 0 and YK (viev) + Z/{ﬂ(’mﬂ/) =1

© Similar as the convex version.

Q Let ZL a;v; be an affine combination of S. Since S — v is a linear space, the
linear combination ZL aj(vi — vi) of S — v belongs into S — vi. Hence,

Vic+ 20, ai(vi — vie) = X, auvi belongs to S.

@ We prove by induction on k that S contains every convex combination Zf:‘ a;v; of
S. The statement holds for k < 2 by the definition of a convex set. Let % | av;
be a convex combination of k vectors of S and we assume that ax < 1, otherwise

ar = =ak1 =080 35, aiv; = vk € S. Hence,
ZL aivi= (1 — ax) ZL 11& Vi + axVi = (1 — ax)y + axVk Where we observe
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Linear, affine and convex combinations

Let S C R” be a non-empty set.
@ The linear hull of a set S is the set of all linear combinations of S. ®
@ The affine hull of a set S is the set of all affine combinations of S. @
@ The convex hull of a set S is the set of all convex combinations of S. ®
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Independence and base

Definition

@ A set of vectors S C R" is linearly independent if no vector of S is a linear
combination of other vectors of S.

@ A set of vectors S C R” is affinely independent if no vector of S is an affine
combination of other vectors of S.

Observation (Exercise)

@ Vectors vy, ..., v, € R” are linearly dependent if and only if there exists a
non-trivial combination a4, . .., ax € R such that ZL aivi=0.

@ Vectors v1,..., Vv, € R" are affinely dependent if and only if there exists a
non-trivial combination o, . .., ax € R such that >X  ajv;=0a 3%, a; = 0.

Observation

@ Vectors vy, ..., Vv, € R” are affinely independent if and only if vectors
Vi — Vo,...,Vk — Vg are linearly independent. @

@ Vectors vy,..., Vv, € R” are linearly independent if and only if vectors 0, v, ..., vk
are affinely independent. ®
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Definition

Let BC R"and S C R".
@ Bis a base of a linear space S if B are linearly independent and span(B) = S.
@ Bis an base of an affine space S if B are affinely independent and aff(B) = S.

Observation
@ All linear bases of a linear space have the same cardinality.
@ All affine bases of an affine space have the same cardinality. ©

Observation

Let S be alinear space and B C S\ {0}. Then, B is a linear base of S if and only if
B U {0} is an affine base of S.

Definition
@ The dimension of a linear space is the cardinality of its linear base.
@ The dimension of an affine space is the cardinality of its affine base minus one.
@ The dimension dim(S) of a set S C R" is the dimension of affine hull of S.
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@ For the sake of contradiction, let as, ..., ax and by, . .., b, be two basis of an affine
space L = V + x where V alinear space and / > k. Then, a; — x,...,ax — x and
by — x, ..., b, — x are two linearly independent sets of vectors of V. Hence, there
exists i such that a; — x, ..., ax — x,b; — x are linearly independent, so

ai, ..., ax,b; are affinely independent. Therefore, b; cannot be obtained by an

affine combination of ay, ..., ax and b; ¢ aff(as, ..., ax) which contradicts the
assumption that ay, . . ., ax is a basis of L.
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@ Let x € conv(S). Let x = 3% | cix; be a convex combination of points of S with
the smallest k. If x4, ..., x, are affinely dependent, then there exists a combination
0 =" Bix; such that 3" 3 = 0 and B # 0. Since this combination is non-trivial,

there exists j such that 8; > 0 and %; is minimal. Let v = o — a/’f’. Observe that
© X =3 iXi
o >iyvi=1
o y;>0foralli#j

which contradicts the minimality of k.
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System of linear equations and inequalities

Definition
@ A hyperplaneis a set {x € R"; a'x = b} where ac R”\ {0} and b € R.
@ A half-spaceis a set {x € R"; a"x < b} where a€ R"\ {0} and b € R.
@ A polyhedron is an intersection of finitely many half-spaces.

@ A polytope is a bounded polyhedron.

Observation
For every a € R” and b € R, the set of all x € R” satisfying a"x < b is convex.

Every polyhedron {x; Ax < b} is convex.
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Hyperplane separation theorem

Theorem (strict version)

Let C, D C R" be non-empty, closed, convex and disjoint sets and C be bounded.
Then, there exists a hyperplane a"x = b which strictly separates C and D;

thatis C C {x;a"x < b} and D C {x;a"x > b}.

Example

a'x < b
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Carathéodory

Theorem (Carathéodory)

Let S C R". Every point of conv(S) is a convex combinations of affinely independent
points of S. ®

Let S C R” be a set of dimension d. Then, every point of conv(S) is a convex
combinations of at most d + 1 points of S.
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e Convex polyhedron
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Mathematical analysis
Definition
@ Aset S C R"is closedif S contains the limit of every converging sequence of
points of S .

@ Aset S C R"is bounded if there exists b € R s.t. for every x € S holds ||x|| < b.

@ Aset S C R"is compact if every sequence of points of S contains a converging
subsequence with limit in S.

A set S C R" is compact if and only if S is closed and bounded.

Theorem

If f: S — R is a continuous function on a compact set S C R”, then S contains a point
Xx maximizing f over S; that is, f(x) > f(y) forevery y € S.

Definition
@ Infimum of aset S C Ris inf(S) = max{b € R; b< xVx € S}.
@ Supremum of aset SC Ris sup(S) =min{beR; b> x Vx € S}.
@ inf(P) = oo and sup(P) = —occ
@ inf(S) = — if S has no lower bound
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Hyperplane separation theorem
Theorem (strict version)

Let C, D C R" be non-empty, closed, convex and disjoint sets and C be bounded.
Then, there exists a hyperplane a"x = b which strictly separates C and D;
thatis C C {x;a"x < b} and D C {x;a'x > b}.

Proof (overview)

@ Find ¢ € C and d € D with minimal distance ||d — ¢||.

Let m=inf{||d —¢c||; c € C,d € D}.

For every n € N there exists ¢, € C and dp € D such that ||[dn — || < m+ 1i
Since C is compact, there exists a subsequence {ckn};’:1 converging to ¢ € C.
There exists z € R such that for every n € N the distance ||d, — || is at most z. @
Since the set DN {x € R"; ||x — ¢|| < z} is compact, the sequence {dk"};‘;1 has a
subsequence {d), } >~ convergingtod € D.

Observe that the distance ||d — ¢|| is m. @

© 00000

@ The required hyperplane is @8'x = bwherea=d —cand b = %
@ We prove thata'c’ < a'c < b < a'd < a'd’ foreveryc¢’ € Candd’ € D. ®
@ Since Cisconvex,y =c+ a(c¢’ —c) € Cforevery0 < a < 1.
© From the minimality of the distance ||d — || it follows that ||d — y||? > ||d — ¢]|?.
@ Using elementary operations observe that & ||¢’ — ¢||? + a’c > a'c¢’ ®
@ which holds for arbitrarily small a > 0, it follows that aT¢ > a"¢’ holds.
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@ |ldn—cl| < [|dn = Cnl| + [len — €| < m+ 1 +max{||c’ —¢"||; ¢,¢" € C} =z Faces of a polyhedron
Q [|[d—c|l <|ld—d,[l+]ld, — ¢yl +]le, —¢cl| »m

@ The inner two inequalities are obvious. We only prove the first inequality since the

last one is analogous.

Qo Definition

lld - yII?

(d-c—a¢ —¢)'(d-c—a(c —c)

a?(¢' —¢)'(¢' —¢) — 2a(d — ¢)'(c' — ¢)

%Hc’ —c|P+a'c

|d —cl? Let P be a polyhedron. A half-space a"x < 3 is called a supporting hyperplane of P if
T the inequality o"x < 3 holds for every x € P and the hyperplane a"x = 3 has a

(d-¢)(d-c) non-empty intersection with P.

0 The set of point in the intersetion PN {x; a"x = 8} is called a face of P. By

a'e’ convention, the empty set and P are also faces, and the other faces are proper faces.

IV IV IV

v

Definition

Let P be a d-dimensional polyhedron.
@ A 0-dimensional face of P is called a vertex of P.
@ A 1-dimensional face is of P called an edge of P.
@ A (d — 1)-dimensional face of P is called an facet of P.
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@ Observe, that every face of a polyhedron is also a polyhedron. Minimal defining system of a polyhedron

Definition

P={x€eR" Ax=0b', A’x < b"} is a minimal defining system of a polyherdon P if
@ no condition can be removed and
@ no inequality can be replaced by equality

without changing the polyhedron P.

Observation
Every polyhedron has a minimal defining system.

LetP={x eR"; Ax =b', A’x < b"} be a minimal defining system of a polyherdon
P. Let P' = {x € P; A/ ,x = b/} for some row i of A”x < b”. Then dim(P’) < dim(P).

(0)
Corollary

Let P = {x; Ax < b} of dimension d. Then for every row i, either
o Pn{x; Ai.x=bj} =Por
o Pn{x; Ai.x=b}=0or
o Pn{x; Ai.x = b} is a proper face of dimension at most d — 1.
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@ There exists x € P\ P'. Since aff(P’) C {x; A7,x = b{'}, it follows that A point inside a polyhedron
x ¢ aff(P’). Hence, dim(P’) + 1 = dim(P’ U {x}) < dim(P).

Let P be a non-empty polyhedron defined by a minimal system
{xeR" Ax=b', A’x <b"}. Then,

@ there exists a point z € P such that A’z < b" and

@ dim(P) = n —rank(A’), and

@ and z does not belong in any proper face of P.

@ There exists a point z € P such that A"z < b".
@ For every row j of A”x < b" there exists 2/ € P such that A’ z' < b]/.
Q letz= # E,’i; 2/ be the center of gravity.
© Since z is a convex combination of points of P, point z belongs to P and A”z < b".
Q@ dim(P) = n —rank(A’)
@ Let L be the affine space defined by A'’x = b'.
@ There exists € > 0 such that P contains whole ball B = {x € L; ||x — z|| < €}.
© Vectors of a base of the linear space L — z can be scaled so that they belong into B — z.
@ dim(L) > dim(P) > dim(B) > dim(L) = n — rank(A').
© The point z does not belong in any proper face of p.
@ The point z cannot belong into any proper face of P because a supporting hyperplane
of such a face split the ball B.
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A bijection between faces and inequalities @ From minimality it follows that there exists x satifying all conditions of P except
A, x < bf. Let z be a point from the previous theorem. A point y’ can be obtained
as a convex combination of x and z.

@ Otherwise # ZIL y' satisfies strictly all condition contradicting the assumption

LetP={x eR"; Ax=b', A’x < b"} be a minimal defining system of a polyhedron that F'is a proper facet.
P. Then, there exists a bijection between facets of P and inequalities A”x < b”.

Q LetR = {x; A/, x=b;} and F; = PN R.

@ From minimality if follows that R; is a supporting hyperplane, and therefore, F; is a
face.

@ There exists a point y' € F; satisfying A/,y' < b}’ forall j # i. ®

@ Sodim(F;) = dim(P) — 1 and F; is a facet.

@ Furthermore, y' ¢ F;forall j # i, so F; # Fjfor j # .

Q@ For contradiction, let F be an another facet.

@ There exists a facet i such F C F;. ®

@ Fis a proper face of F; and so its dimension is at most dim(P) — 2 contradicting
the assumption that F is a proper facet.

\,
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Fully dimensional polyhedron @ Affine space of dimension n — 1 is determined by a unique condition.

Definition
A polyhedron P C R” is of full-dimension if dim(P) = n.

If P is a full-dimensional polyhedron, then P has exactly one minimal defining system
up-to multiplying conditions by constants. ®
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Minkowski-Weyl Minkowski-Weyl

Theorem (Minkowski-Weyl)

s . ) ) - " Theorem (Minkowski-Weyl)
A set S C R" is a polytope if and only if there exists a finite set V C R” such that
S = conv(V). A set S C R" is a polytope if and only if there exists a finite set V C R” such that

S = conv(V).

lllustration

Proof of the implication = (main steps) by induction on dim(S)

V3
A3 X < bs For dim(S) = 0 the size of Sis 1 and the statement holds. Assume that dim(S) > 0.
Q Let S={xeR"; Ax=0b', A’x <b"} be a minimal defining system.
Q LetS;={x e S; Al,x =Db]} where iis arowof A’x < b".
@ Since dim(S;) < dim(S), there exists a finite set V; C R” such that S; = conv(V;).
----- ve Q Let V =, Vi. We prove that conv(V) = S.
N\ A.x < b, C Follows from V; C S; C S and convexity of S.
ST D Letx € S. Let L be a line containing x.

Sn Lis aline segment with end-vertices u and v.

There exists i, j € / such that A/ u = bj’ and Al = by’

Since u € S;and v € S;, points u and v are convex combinations of V; and V}, resp.
A .x < by ) Since x is a also a convex combination of u and v, we have x € conv(V).

Ay X < bs

As, . X < bsx
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Minkowski-Weyl @ Observe that a’v < 8 means the same as (_"1)T(§) < 0. Therefore, Qs
described by |V| + 2n + 2 inequalities. Furthermore, conditions —1 < a < 1 and
Theorem (Minkowski-Weyl) —1 < B <1 implies that Q is bounded.

A set S C R"is a polytope if and only if there exists a finite set V C R” such that @ Here we use the implication = of Minkovski-Weyl theorem which we already

S = conv(V). proved.
@ Every point of V satifies all conditions of Q since Q contains only conditions

Lemma satisfied by all points of V. Since W C conv(W) = Q, it follows that every point of
A condition v < f is satisfied by all points v € V if and only if the condition is V satifies all conditions of W. Hence, V' C Y. Since ¥ is convex, the inclusion

satisfied by all points v € conv(V) conv(V) C Y.
: @ Apply Hyperplane separation theorem on sets Q and {x}.

Proof of the implication < (main steps) © Scale the vector (%) so that it fit into this box.

) LetQ:{(;); GER"BER -1<a<1,—1<B<1,av<BWe v}. o® Q Use lemma.

@ Since Qs a polytope, there exists a finite set W C R™" s.t. Q = conv(W). @
Q Lety = {x ER a'x <BV(3) € W} and we prove that conv(V) = Y.

C From V C Y it follows that conv(V) C Y. ®
O We prove that x ¢ conv(V) = x ¢ Y.

There exists & € R", 3 € Rst. a"x > gandWv € V : aTv < @
Assumethat -1 <a<1,-1<g<1.®

Observe that () € Q and x fails at least one condition of Q.
Hence, x fails at least one condition of W. @
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QC Ve: Letz € V be a vertex. By definition, there exists a supporting hyperplane ¢"x = ¢ such
that P {x; ¢'x = t} = {z}. Since ¢"x < tforallx € P\ {z}, it follows that x € V.

Ve C Vp: Letz € V. Since conv(P \ {z}) # P, it follows that z € V.

Vo C V: Letz € Vg and D = conv(V; \ {z}). From Minkovski-Weyl's theorem it follows that V4
is finite and therefore, D is compact. By the separation theorem, there exists a
hyperplane ¢"x = r separating {z} and D, thatis ¢"x < r < ¢'z for all x € D. Let
t=c'z. Hence, A= {x; ¢"x = t% is a supporting hyperplane of P.

We prove that AN P = {z}. For contradiction, let z’ € P N A be a different from z.
Then, there exists a convex combination 2’ = a1X1 + - - - + X, + «pZ of V. From
z # 7' it follows that ap < 1 and «; > 0 for some i. Since ap€’z = tand a;¢x; < t
and a;cTx; < t, it holds that €Tz’ < t which contradicts the assumption that 2’ € A.

Let P be a polyhedron and V its vertices. Then, x is a vertex of P if and only if
x ¢ conv(P\ {x}). Furthermore, if P is bounded, then P = conv(V).

Proof (only for bounded polyhedrons)

@ Let V be (inclusion) minimal set such that P = conv(Vs).
@ Let Vo ={x e P; x ¢ conv(P\ {x})}.
o Weprovethat V= Vo= V. ©
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Theorem (A face of a face is a face)

Let F be a face of a polyhedron P and let E C F. Then, E is a face of F if and only if E
is a face of P.

Observation (Exercise) © simplex method
The intersection of two faces of a polyhedron P is a face of P.

Observation (Exercise)

A non-empty set F C R” is a face of a polyhedron P = {x € R"; Ax < b} if and only if
F is the set of all optimal solutions of a linear programming problem
min {¢"x; Ax < b} for some vector ¢ € R".
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Notation used in the Simplex method

@

@ Linear programming problem in the equation form is a problem to find x € R” Definitions
which maximizes ¢"x and satisfies Ax = b and x > 0 where A € R™*" and Consider the equation form Ax = b and x > 0 with n variables and rank(A) = m rows.
beR". @ A set of columns Biis a basis if Ag is a regular matrix.

© We assume that rows of A are linearly independent. o The basic solution x corresponding to a basis Bis Xy = 0 and xg = Az 'b.

@ Forasubset BC {1,...,n}, let Ag be the matrix consisting of columns of A @ A basic solution satisfying x > 0 is called basic feasible solution.

whose indices belong to B.

o _ o @ xp are called basic variables and xy are called non-basic variables. ©
@ Similarly for vectors, x denotes the coordinates of x whose indices belong to B.

@ Theset N={1,...,n}\ Bdenotes the remaining columns.
A feasible solution x is basic if and only if the columns of the matrix Ak are linearly
Consider B = {2,4}. Then, N = {1,3,5} and independent where K = {j € {1,...,n}; x; > 0}.
13 5 6 0 3 6 1.5 0
l ) w=(e) =3 )
S . A
T T T Basic feasible solutions are exactly vertices of the polyhedron
X —(37476»277) XB—(472) xN—(37617) P:{X;AX:b,XEO}. [ONO)]

Note that Ax = Agxpg + AnXn.

@ Remember that non-basic variables are always equal to zero.

@ If x is a basic feasible solution and B is the corresponding basis, then xy = 0 and
so K C B which implies that columns of Ak are also linearly independent. Canonical form
If columns of Ak are linearly independent, then we can extend K into B by adding
columns of A so that columns of Ag are linearly independent which implies that B

Example: Initial simplex tableau

Maximize xi1 + X2
—X1 + X2

. ; < 1
is a basis of x. X < 3

1 =
@ Note that basic variables can also be zero. In this case, the basis B corresponding X2 < 2
to a basic solution x may not be unique since there may be many ways to extend X1,X2 g 0

K into a basis B. This is called degeneracy.

Equation form

Maximize xi + X2
—X1 + X2 + X3
X1 + X4
X2 + Xs
X1,X2,X3,X4, X5

IV
o w =

Simplex tableau

X3 = 1 + x1 — X2
Xs = 3 — X

X5 = 2 — X2

z = X1 + X2

Example: Initial simplex tableau Example: Pivot step

Simplex tableau Simplex tableau

X3 = 1 + X1 — X2 x3 = 1 + X1 — X2
Xs = 3 — X4 Xs = 3 — X4
X5 = 2 — X2 X5 = 2 - X2
z = X1 + X2 z = X1+ Xz
Initial basic feasible solution
@ B={3,4,5}, N={1,2} @ Original basis B = {3,4,5}

e x=(0,0,1,3,2) @ X; enters the basis (by our choice).
R ekl kit
Two edges from the vertex (0,0, 1,3, 2): ° Therefort.e, Xg leaves the basis.
@ (t,0,1+t,3—t,2) when x; is increased by t @ New basis B = {2,4,5}

@ (0,r,1—r,3,2—r)when x; is increased by r New simplex tableau

These edges give feasible solutions for:

) X2 = 1 + x1 - X

@ t<3sincexs=1-+t>0andxs=3—-t>0andxs=2>0 xj - 3 _ x: :
Q r<isincexs=1-r>0andx;=3>0andxs=2—-r>0 xs = 1 — X4 + X3
In both cases, the objective function is increasing. We choose xz as a pivot. z =1 + 2x4 — X3
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Example: Next step

Simplex tableau

X2 = 1 + X1 — Xs
Xs = 3 — X4

Xxs = 1 — X1 + Xs
z =1 4+ 2x1 — X3

Next pivot
@ Basis B = {2,4,5} with a basic feasible solution (0,1,0,3,1).
@ This vertex has two incident edges but only one increases the objective function.
@ The edge increasing objective function is (t,1+1,0,3 —t,1 —t).
@ Feasible solutions forx =1+ t>0andxs =3 —-t>0andxs =1—t>0.
@ Therefore, x1 enters the basis and xs leaves the basis.

Example: Last step

Simplex tableau

X1 = 1 + X3 — Xs
X2 = 2 - X5
X4 = 2 — X3 + Xs
z = 3 + X3 — 2Xs

Next pivot
@ Basis B = {1, 2,4} with a basic feasible solution (1,2,0,2,0).
@ This vertex has two incident edges but only one increases the objective function.
@ The edge increasing objective functionis (1 +t,2,t,2 — t,0).
@ Feasible solutions forxs =1+t>0andx2 =2>0andxs =2 —t > 0.
@ Therefore, x3 enters the basis and x4 leaves the basis.

| \

New simplex tableau

New simplex tableau

x1 = 1 + X3 — Xs Xy = 3 — X4

X2 = 2 Xs X2 = 2 - Xs
X4 = 2 — X3 + Xs X3 = 2 — X4 + Xs
z = 38 + Xx3 2Xs z =5 X4 — Xs

Example: Optimal solution

Simplex tableau in general

Simplex tableau

Xi = 3 — x4 A simplex tableau determined by a feasible basis B is a system of m + 1 linear
X2 = 2 — X5 equations in variables X1, ..., Xn, and z that has the same set of solutions as the
Xs = 2 — X4 + Xs system Ax = b, z = ¢"x, and in matrix notation looks as follows:
V4 = 5 — X4 — Xs Xs = p + OXN

z = zp + r'xy

@ Basis B = {1, 2,3} with a basic feasible solution (3,2, 2,0,0).
@ This vertex has two incident edges but no one increases the objective function.
@ We have an optimal solution.

where x;p is the vector of the basic variables, xy is the vector on non-basic variables,
peR” reR"™", Qisanmx (n— m) matrix, and z € R.

For each basis B there exists exactly one simplex tableau, and it is given by

Why this is an optimal solution? e Q=-A"Ay
@ Consider an arbitrary feasible solution y. °op=A;"bQ®

@z = chE‘b
@ r=~cn— (CE;A§1AN)T ®

@ The value of objective functionis 2 =5 — y, — ys.
@ Since y,,¥s > 0, the objective valueis 2 =5—y, — s <5=z.
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Properties of a simplex tableau

Simplex tableau in general

@ Since a matrix Ag is regular, we can multiply an equation Agxs + AnXy = b by
Ag' to obtain xg = Ag'b — A" Awxn, 50 Q = —Az'Ayand p = Az'b.

@ The objective function is
ChXs -+ Cyxn = Ch(Ag'b — Az AnXn) + CyXn = CBAZ 'b + (C — €A An)Xn, SO
2 =chAz'band r = cy — (chA; ' An)".

Xxg = p + Qxpn
z = 20 + r'xy

Observation

Basis B is feasible if and only if p > 0.

Observation

The solution corresponding to a basis B is optimal if r < 0. ©

Observation

If a linear programming problem in the equation form is feasible and bounded, then it
has an optimal basic solution.
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Pivot step

Simplex tableau in general

Xs = p + Qxy
z = 2z + r'xy

Find a pivot
@ If r <0, then we have an optimal solution.
@ Otherwise, choose an arbitrary entering variable x, such that r, > 0.

e If Q.,v > 0, then the corresponding edge is unbounded and the problem is also
unbounded. ©

@ Otherwise, find a leaving variable x, which limits the increment of the entering

variable most strictly, i.e. Qu,v < 0 and — a'L"V is minimal.

Update the simplex tableau

Gaussian elimination: Express x, from the row x, = p, + Qu.Xn and substitute x,
using the obtained formula.

@ The oposite implication may not hold for a degenerated optimal basis.
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@ Consider the following edge: x, = t, remaining nonbasic variables are 0, and Pivot rules
Xg = p+ Q. vt. All solutions on this edge are feasible for t > 0 since x > 0. For
the objective value, ¢"x = zy + r'xy = z + r,t — oo as t — oo, so the objective
function is unbounded.

Pivot rules
Largest coefficient Choose an improving variable with the largest coefficient.

Largest increase Choose an improving variable that leads to the largest absolute
improvement in z.

Steepest edge Choose an improving variable whose entering into the basis moves the
current basic feasible solution in a direction closest to the direction of
the vector ¢, i.e.

€' (Xnew — Xoi)
Hxnew - Xo/d”

Bland’s rule Choose an improving variable with the smallest index, and if there are
several possibilities of the leaving variable, also take the one with the
smallest index.

Random edge Select the entering variable uniformly at random among all improving
variables.
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Initial feasible ba @ Now, assume that b > 0.

Equation form
Maximize ¢"x such that Ax = b and x > 0.

Auxiliary linear program

@ Multiply every row j with b; < 0 by —1. @

@ Introduce new variables y € R” and solve an auxiliary linear program:
Maximize —1"y such that Ax + ly =band x >0,y > 0.

@ An initial basis contains variables y and an initial tableau is

y = b + Ax
z = 1 + (1"Ax

@ Whenever a variable of y become nonbasic, it can be removed from a tableau.

@ When all variables of y are removed, express the original objective function ¢"x
using nonbasic variables and solve the problem.

The original linear program has a feasible solution if and only if an optimal solution of
the auxiliary linear program satisfies y = 0.
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Complexity @ For example, the apex of the 3-dimensional k-side pyramid belongs to k faces, so
there are (£) bases determining the apex.
@ In degeneracy, the simplex method stay in the same vertex; and when the vertex is

o Different bases may correspond to the same solution. © @ The Klee-Minty cube is a “deformed” n-dimensional cube with 2n facets and 2"
vertices. The Dantzig’s original pivot rule (largest coefficient) visits all vertices of
this cube.

@ The simplex method may loop forever between these bases.
@ Bland’s or lexicographic rules prevent visiting the same basis twice.

4

The number of visited vertices

@ The total number of vertices is finite since the number of bases is finite.

@ The objective value of visited vertices is increasing, so every vertex is visited at
most once. @

@ The number of visited vertices may be exponential, e.g. the Klee-Minty cube. ®

@ Practical linear programming problems in equation forms with m equations
typically need between 2m and 3m pivot steps to solve.

Open problem
Is there a pivot rule which guarantees a polynomial number of steps?
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Outline Duality of linear programming: Example

Find an upper bound for the following problem

Maximize 2x; + 3x»

subjectto 4x; + 8xx < 12
2x1 + x2 < 3
3x1 + 2x2 < 4
Xi,X2 > 0
Simple estimates

e Duality of linear programming @ 2x1 +3xp < 4x1 +8x2 <12 ®
@ 2x1 + 3x2 < %(4X1 +8x2) <6 0]
@ 2X1 +3X2 = 1(4X1 +8X2 +2X1 +X2) <5 @

What is the best combination of conditions?

Every non-negative linear combination of inequalities which gives an inequality
dix1 + d>x2 < hwith d; > 2 and d» > 3 provides the upper bound
2x1 + 3X2 < dixy + d2x2 < h.
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@ The first condition
@ A half of the first condition
@ A third of the sum of the first and the second conditions
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@ The primal optimal solution is x™ = (3, %) and the dual solution is y" = (,0, ),

both with the same objective value 4.75.
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Dualization

Every linear programming problem has its dual, e.g.

@ Maximize ¢"x subject to Ax > b and x > 0 — Primal program

@ Maximize ¢"x subject to —Ax < —b and x > 0 — Equivalent formulation
@ Minimize —b"y subject to —A"y > ¢ and y > 0 — Dual program

@ Minimize b"y subject to A"y > ¢ and y < 0 — Simplified formulation

A dual of a dual problem is the (original) primal problem

@ Minimize b"y subject to A"y > ¢ and y > 0 — Dual program

-Maximize —b"y subject to ATy > ¢ and y > 0 — Equivalent formulation
-Minimize ¢"x subject to Ax > —b and x < 0 — Dual of the dual program
-Minimize —c"x subject to —Ax > —b and x > 0 — Simplified formulation
Maximize ¢"x subject to Ax < b and x > 0 — The original primal program
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Linear programming: Feasibility versus optimality

Feasibility versus optimality

Finding a feasible solution of a linear program is computationally as difficult as finding
an optimal solution.

The optimal solutions of linear programs
@ Primal: Maximize ¢"x subject to Ax < band x >0
@ Dual: Minimize b"y subjectto Ay > candy >0
are exactly feasible solutions satisfying

Ax < b
Ay > ¢
c'x > by
xy > 0
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ality of linear programming: Example

Consider a of inequalities
Maximize 2x; + 3x2
subjectto 4xy + 8x» < 12 /.y,
2x1 + X2 < 3 /-y,
31 + 2x2 < 4 /-y,
X1,X2 > 0

Observations
@ Every feasible solution x and non-negative combination y satisfies
(4Y1 + 2y, +3Y3)X1 + (8Y4 + o + 2¥5)X2 < 12y, + 3y, + 4y,

o If4y, +2y, +3y; >2and 8y, +y, +2y; >3,
then 12y, + 2y, + 4y, is an upper for the objective function.

Dual program ©

Minimize 12y, + 2y, + A4y,

subjectto 4y, + 2y, + 3y; > 2
8y, + Y. + 2y3 > 3
y1 il y2uy3 Z 0
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Duality of linear programming: General

Primal linear program

Maximize ¢"x subject to Ax < band x > 0

| Dualy ofinear programming: Goreral |
e

Dual linear program
Minimize b"y subjectto ATy > candy >0

Weak duality theorem

For every primal feasible solution x and dual feasible solution y hold ¢'x < b"y.

If one program is unbounded, then the other one is infeasible.

Duality theorem

Exactly one of the following possibilities occurs
@ Neither primal nor dual has a feasible solution
@ Primal is unbounded and dual is infeasible
@ Primal is infeasible and dual is unbounded
@ There are feasible solutions x and y such that ¢'x = b"y
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Dualization: General rules

Maximizing program | Minimizing program
Variables X1, Xn Yoo ¥m
Matrix A AT
Right-hand side b c
Objective function maxc’x minb'y
Constraints | i-th constraint has < y; >0
i-th constraint has > y; <0
i-th constraint has = y,eR
x; >0 Jj-th constraint has >
x; <0 j-th constraint has <
Xj € R Jj-th constraint has =

Complementary slackness

Feasible solutions x and y of linear programs
@ Primal: Maximize ¢"x subject to Ax < band x > 0
@ Dual: Minimize b"y subjectto A"y > candy >0
are optimal if and only if
° x,-:OorALy:c,-foreveryi: 1,...,nand
@ y,=0o0rA;,x=b;foreveryj=1,....m.

n n m m
cx=>"cxi <> (Y AN =y Ax=> "y (A.x)<> yb=by
i=1 i=1

j=1 j=1
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Goal: Find a feasible solution

Fourier—Motzkin elimination: Example

2x — 5y + 4z < 10
3x — 6y + 3z < 9
5 + 10y - z < 15
-x + b5y - 2z < -7
-3 + 2y + 6z < 12

Express the variable x in each condition

x < 5 + 3y - 2z
x < 3 + 2y - z
x < 3 - 2y + 1z
x > 7 + by — 2z
x > -4 + 2y + 2z

Eliminate the variable x
The original system has a feasible solution if and only if there exist y and z satisfying

max{7+5y—2z,—4+§y+2z}gmin{5+gy—22,3+2y—z,3—2y+%z}
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Fourier—Motzkin elimination: In general

Observation

Let Ax < b be a system with n > 1 variables and m inequalities. There is a system
A'x’ < b’ with n — 1 variables and at most max {m, m?/4} inequalities, with the
following properties:

@ Ax < b has a solution if and only if A’x’ < b’ has a solution, and
@ each inequality of A’x’ < b’ is a positive linear combination of some inequalities

from Ax < b.
@ WLOG: Ay € {-1,0,1}foralli=1,...,m
Q LetC={i; Ay =1}, F={i; Ay =—1}and L = {i; Ay =0}

© Let Ax’ < b’ be the system of n — 1 variables and |C| - |F| + |L| inequalities
jeCkeF: (A +Ag)x < bi+bc (1)
lel: A.x < b (2)
@ Assuming A'x’ < b’ has a solution x’, we find a solution x of Ax < b:
o (1) is equivalent to A;(,*x’ — by <bj— Alf’*x’ forallje C,k e F,
@ which is equivalent to maxxer {A;wx’ — bk} < minjec {b,- — A]’._*x’}
@ Choose x1 between these bounds and x = (x4, x’) satisfies Ax < b
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Farkas lemma

Proposition (Farkas lemma)
Let A€ R™" and b € R". The following statements hold.
@ The system Ax = b has a non-negative solution x € R” if and only if every y € R”
with yTA > 0" satisfies y"b > 0.
@ The system Ax < b has a non-negative solution x € R” if and only if every
non-negative y € R™ with y"A > 0" satisfies y"b > 0.
© The system Ax < b has a solution x € R” if and only if every non-negative y € R”
with yTA = 0" satisfies y"b > 0.

=
3

Overview of the proof of duality
Fourier—Motzkin elimination

Farkas lemma, 3rd version

Farkas lemma, 2nd version

Duality of linear programming

Observation (Exercise)
Variants of Farkas lemma are equivalent.
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Proof of the duality of linear programming

Proposition (Farkas lemma, 2nd version)

Let A€ R™ " and b € R™. The system Ax < b has a non-negative solution if and only
if every non-negative y € R™ with y"A > 0" satisfies y"b > 0.

Duality

@ Primal: Maximize ¢"x subject to Ax < band x >0
@ Dual: Minimize b"y subjectto A"y > candy >0

If the primal problem has an optimal solution x*, then the dual problem has an optimal
solution y* and ¢"x* = b'y*.

Proof of duality using Farkas lemma

@ Let x* be an optimal solution of the primal problem and v = ¢"x*
Q ¢>0iff Ax <bandx >0and c'x > v + ¢ is infeasible

Q > 0iff (4)x < (_2_)) and x > 0 is infeasible
Q c>0iffu,z>0and (4)"( %) >0"and (%)7(_° ) < 0is feasible

Q ¢>0iffu,z>0and ATu > zc and b'u < z(v + ) is feasible
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Fourier—Motzkin elimination: Example

Rewrite into a system of inequalities

Real numbers y and z satisfy
max {7 + 5y — 2z,—4+ 2y + 2z} <min {5+ 3y — 22,8 +2y — 2,3 - 2y + Lz} if
and only they satisfy

7 + 5y - 2z < 5 + %y — 2z
7 4+ 5 — 2z < 38 + 2y - z
7 + 5y — 2z < 3 — 2y + lz
4 + %y 4+ 2z < 5 + %y — 2z
-4 + iy + 2z < 3 4+ 2y — z
-4 + %y + 2z < 3 - 2y + lz

o Eliminate the variable y, find a feasible evaluation of z a and compute y a x.

@ In every step, we eliminate one variable; however, the number of conditions may
increase quadratically.

o If we start withn m conditions, then after n eliminations the number of conditions is
up to 4(m/4)*" .
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rkas lemma

A cone generated by vectors ay, . ..,a, € R" is the set of all non-negative
combinations of &, ..., an, i.e. {0, aia; o,...,an > 0}.

Proposition (Farkas lemma geometrically)

Let ai,...,a, b € R™. Then exactly one of the following two possibilities occurs:
@ The point b lies in the cone generated by ay, . . ., an.

@ There exists a hyperplane h = {x € R™; y"x = 0} containing 0 for some y € R”
separating @i,...,a,and b, i.e. y'a; > Oforalli=1,...,nand y"b < 0.

Proposition (Farkas lemma)

Let A€ R™" and b € R". Then exactly one of the following two possibilities occurs:
@ There exists a vector x € R” satisfying Ax = b and x > 0.
@ There exists a vector y € R™ satisfying y"A >0 and y"b < 0.
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Farkas lemma

||

Proposition (Farkas lemma, 3rd version)

Let A€ R™" and b € R™. Then, the system Ax < b has a solution x € R” if and only if
every non-negative y € R™ with y"A = 0" satisfies y"b > 0.

Proof (overview)
= If x satisfies Ax < b and y > 0 satisfies y"A = 0", then y"b > y"Ax > 0"x =0
<« If Ax < b has no solution, the find y > 0 satisfying y"A = 0" and y"b < 0 by the
induction on n
n=0 e The system Ax < b equals to 0 < b which is infeasible, so b; < 0 for some i
Choose y = e; (the i-th unit vector)

°
n>0 e Using Fourier—Motzkin elimination we obtain an infeasible system A'x’ < b’
o There exists a non-negative matrix M such that (0|A’) = MA and b’ = Mb
@ By induction, there exists y’ > 0, y’'TA’ =07, y'Tb’ < 0
o We verify that y = MTy’ satisfies all requirements of the induction
y=My >0
yTA= (MTy')'A=y'TMA=y'T(0|A') = 0"
y'b = (MTy")'b =y TMb = y'Tb' < 0"
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Proof of the duality of linear programming

Duality

@ Primal: Maximize ¢"x subject to Ax < band x >0
o Dual: Minimize b"y subjectto A"y > candy >0

If the primal problem has an optimal solution x*, then the dual problem has an optimal
solution y* and ¢"x* = b'y*.

Proof of duality using Farkas lemma (continue)

@ Let x* be an optimal solution of the primal problem and v = ¢"x*

Q ¢>0iffu,z>0and A'u> zcand b'u < z(v + ¢) is feasible

© For e > 0, there exists u', 2’ > 0 with A'u’ > Z’cand b'u’ < Z/(v +¢)

@ Fore=0itholds thatu’,z > 0and A"v’ > Z¢so b'u’ > z'v

@ Since 'y < b'W' < Z/(y +¢) and Z’ > 0 it follows that 2/ > 0

Q Letv=tu

@ Since A"v > c and v > 0, the dual solution v is feasible

@ Since the dual is feasible and bounded, there exists an optimal dual solution y*
© Hence, b"y* < v+ cforevery e > 0,and so b'y* < v

@ From the weak duality theorem it follows that b"y* = ¢"x*
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Problem

Determine whether a given fully-dimensional convex compact set Z C R” (e.g. a
polytope) is non-empty and find a point in Z if exists.

Separation oracle

Separation oracle determines whether a point s belongs into Z. If s ¢ Z, the oracle
finds a hyperplane that separates s and Z.

@ cEliipsoid method

@ Radius R > 0 of a ball B(0, R) containing Z
@ Radius ¢ > 0 such that Z contains B(s, ¢) for some point s if Z is non-empty
@ Separation oracle

Ellipsoid method Ellipsoid

Definition: Ball
The ball in the centre s € R” and radius R > 0is B(s, R) = {x e R"; ||x — s|| < R}.

Consider an ellipsoid E containing Z. In every step, reduce the volume of E using an
hyperplane provided by the oracle.

Ellipsoid E is an affine transformation of the unit ball B(0, 1). That is,

Algorithm E = {Mx +s; x € B(0,1)} where M is a regular matrix and s is the centre of E.
1 Init: s =0, E = B(s, R)

: Loop

3 if volume of E is smaller than volume of B(0, €) then

4 L return Z is empty E = {y € R"; M*1(yis) c B(0,1)}

5 Call the oracle . T

s | ifseZthen = {yeri -9’ M y-9) <1}

~

| return s is a point of Z

= R" (y—8)'Q'(y—s)<1
8 Update s and Z using the separation hyperplane fount by oracle {y €ERG y-s)Q (y-9)< }

where Q = MM" is a positive definite matrix

Ellipsoid method: update of the ellipsoid Ellipsoid method: Estimation of radii for rational polytopes
Separation hyperplane Largest coefficient of A and b
Consider a hyperplane ax — b such that a's > band Z C {x; a'x < b}. Let L be the maximal absolute value of all coefficients of A and b.

For simplicity, assume that the hyperplane contains s, that is a's = b. Estimation of R
Undate f | r— . We find R’ such that ||x||- < R’ for all x satisfying Ax < b:
pdate formulas (without proof) @ Consider a vertex of the polytope satisfying a subsystem A'x = b’

' 1 Qa det A/
s=s—— o Cramer's rule: X; = gz
n+1./a'Qa I detA’
2 - @ |det(A})| < n!L" using the definition of determinant
Q = a < = % C:Z)ao) @ |det(A’)| > 1 since A’ is integral and regular
4 From the choice R’ = n!L", it follows that log(R) = O(n?log(n) log(L))
Reduce of the volume (without proof) Estimation of ¢ (without proof)
volume(E’) < otz A non-empty rational fully-dimensional polytope contains a ball with radius ¢ where
volume(E) — Iog% = O(poly(n, m,log L)).

Complexity of Ellipsoid method

Time complexity of Ellipsoid method is polynomial in the length of binary encoding of A
and b.
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The number of steps of the Ellipsoid method is at most [n(2n + 2)In £7.

Ellipsoid method is not strongly polynomial (without proof)

For every M there exists a linear program with 2 variables and 2 constrains such that
the ellipsoid method executes at least M mathematical operations.

Open problem

Decide whether there exist an algorithm for linear programming which is polynomial in 0 Matching
the number of variables and constrains.
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Matching problems @ In the perfect matching problem, we can add a constant to weights of all edges
without changing the set of all optimal perfect matchings. Therefore, if some edge

has a negative weight, we can add a sufficiently large constant to all weights to

erfect matching problem ensure non-negativity of c.

Input: Graph (V, E)
Output: Perfect matching M C E if it exists

mum weight perfect matching problem

Input: Graph (V, E) and weights ¢c. > 0 on edges e € E ©
Output: Perfect matching M C E minimizing the weight 3, Ce

@ Tools: Augmenting paths, Tutte-Berge formula, alternating trees
@ Perfect matching in bipartite graphs without weights

@ Minimum weight perfect matching in bipartite graphs

@ Tool: Shrinking odd circuits

@ Perfect matching in general graphs without weights

@ Minimum weight perfect matching in general graphs

@ Maximum weight matching

4
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Augmenting paths Tutte-Berge Formula

Let M C E a matching of a graph G = (V, E). Do
@ Avertex v € Vis M-covered if some edge of M is incident with v.
@ Avertex v € V is M-exposed if v is not M-coveder.
@ A path Pis M-alternating if its edges are alternately in and not in M.
@ An M-alternating path is M-augmenting if both end-vertices are M-exposed. Observations
@ def(G) > oc(G)

Augmenting path theorem of matchings
9 9P 9 o For every A C V it holds that def(G) = oc(G\ A) — |4|. ®

A matching M in a graph G = (V, E) is maximum if and only if there is no
M-augmenting path.

@ Let def(G) be the number of exposed vertices by a maximum size matching in G.
@ Let oc(G) be the number of odd components of a graph G. ©

Tutte’s matching theorem

A graph G has a perfect matching if and only if oc(G \ A) < |A| forevery AC V. ®

= Every M-augmenting path increases the size of M
< Let N be a matching such that [N| > |M| and we find an M-augmenting path

@ The graph (V, NU M) contains a component K which has more N edges than M edges Theorem: Tutte-Berge Formula (without proof
@ K has at least two vertices u and v which are N-covered and M-exposed . 9 ( P )
@ Verteces u and v are joined by a path P in K def(G) = max{oc(G\ A) — |A|; AC V}
Q Observe that P is M-augmenting
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@ A component of a graph is odd if it has odd number of vertices. Building an alternating tree

@ Every odd component has at least one exposed vertex.

(%] = If agraph G has a perfect matching, then def(G) = 0, so from the Initialization of M-alternating tree T on vertices AUB
previous observation it follows that oc(G \ A) < |A].

< We will present an algorithmic proof which finds a perfect matching

or a subset A C V such that oc(G\ A) > |A|.
Use uv € E to extend T

Input: An edge uv € E such that u € Band v ¢ AU B and v is M-covered.
Action: Let vz € M and extend T by edges {uv, vz} and Aby v and B by z.

@ ris the only M-exposed vertex of T.
@ Forevery v of T, the path in T from v to r is M-alternating.
o |B| = |A +1

Use uv € E to augment M

Input: An edge uv € E suchthatu € Band v ¢ AU B and v is M-exposed.

Action: Let P be the path obtained by attaching uv to the path from rto uin T.
Replace M by MAE(P).

Jirka Fink Optimization methods 92 Jirka Fink Optimization methods 93

@ An M-alternating tree T with the root r on vertices A and B is a tree obtained from Frustrated tree

this initialization by applying the following operation extend.

T =A=0and B= {r} where r is an M-exposed root. ®

Definition

M-alternating tree T is M-frustrated if every edge of G having one end vertex in B has
the other end vertex in A. @

Observation

If a bipartite graph G has a matching M and an frustrated M-alternating tree, then G
has no perfect matching. @ ®
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@ That is, an M-alternating tree is frustrated if neither operation extend nor augment Algorithm for perfect matching problem in a bipartite graph
can be applied. Note that in bipartite graphs, there is no edge between vertices of
B. Algorithm

@ B are single vertex components in the graph G\ A. Therefore, .
oc(G\ A) > |B| > |A|. 1 Init: M =0 '
@ This proves that Tutte’s matching theorem for bipartite graphs: From every 2 while G contains an M-exposed vertex r @ do

M-exposed vertex r we build an M-alternating tree T such that T can be used to 3 | Ai=0andB={r} # Build an M-alternating tree from r.
augment M to cover r or T is frustrated. while there exists uv € E withu € Bandv ¢ AU B do

if v is M-covered then

| Use uvtoextend T
else

L Use uv to augment M

© ® N o o &

break # Terminate the inner loop.

°

if r is still M-exposed @ then
1 L return There is no perfect matching # T is a frustrated tree.

return Perfect matching M

The algorithm decides whether a given bipartite graph G has a perfect matching and
find one if exists. The algorithm calls O(n) augmenting operations and O(n?) extending
operations.
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© Actually, it suffices to once tterate over all vertices. Duality and complementary slackness of perfect matchings

@ That is, the augmentation was no applied.

o

Primal: relaxed perfect matching

Minimize ¢"x subject to Ax = 1 and x > 0 where A is the incidence matrix.

Maximize 1"y subject to ATy < cand y € RE, thatis y, +y, < Cu.

Idea of primal-dual algorithms

If we find a primal and a dual feasible solutions satisfying the complementary
slackness, then solutions are optimal (relaxed) solutions.

Definition

@ Anedge uv € E is called tightify , +y, = Cu.
@ Let E, be the set of a tight edges of the dual solution y.
o Let My = {uv € E; xu, = 1} be the set of matching edge of the primal solution x.

Complementary slackness
Xy =0o0ry,+y, = cu forevery edge uv € E, thatis My C E,.
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Weighted perfect matchings in a bipartite graph: Overview Algorithm for minimum weight perfect matchings in a bipartite graph
Complementary slackness .

. Algorithm
Xy =0o0ry,+y, = cu forevery edge uv € E, thatis Mx C E,.

1 Initt M:=0andy =0
2 while G contains an M-exposed vertex r do
o x € {0,1}€ and My = {uv € E; Xuy = 1} forms a matching. 3 A:=0and B={r} # Build an M-alternating tree from r.
- 7I o o e e i 4 while r is M-exposed do
© Dual solution is feasible, thatis y,, +, < Cw. 5 if there exists uv € Ey withu € Bandv ¢ AU B then
@ Every matching edge is tight, that is Mx C E,. 6 if v is M-covered then
™ ; PrE— 7 | Useuvtoextend T ®
Initial solution satisfying invariants 8 else
x—=0andy—0 9 | Use uv to augment M ®
— 10 else if there exists uv € E withu € Bandv ¢ AU B then
Lemma: optimality 1 e=min{cw—Yy,— Y, u,ve E,ucB,v¢gAUB}
If My is a perfect matching, then My is a perfect matching with the minimum weight. 12 Yo=Y, +eforaluecB
13 y, =y, —cforalve A® ®
Idea of the algorithm 14 else
@ If there exists an My-augmenting path P in (V, E), then use P to augment M. v L | return There is no perfect matching in G. ©
@ Otherwise, use a frustrated Mx-alternating tree in (V, Ey) to update the dual 16 return Minimum weight perfect matching M

solution y and enlarge Ey.
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© Note that T uses only tight edges. Algorithm for minimum weight perfect matchings in a bipartite graph

@ Invariants are satisfied since M is augmented by edges of T which are tight.

@ Observe that y remains a dual feasible solution. Furthermore, no edge is removed
from the tight set E, and at least one edge become tight. Therefore, all invariants
remain satisfied.

© In the next iteration, an edge uv minimizing ¢ is used to extend T or augment M.

@ T is afrustrated M-alternating tree in G. Also note that the dual problem is
unbounded since ¢ is unbounded in this case.

The algorithm decides whether a given bipartite graph G has a perfect matching and a
minimal-weight perfect matching if exists. The algorithm calls O(n) augmenting
operations and O(n?) extending operations and O(n?) dual changes.
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Shrinking odd circuits @ Formally, E(G x C) = {uv; uv € E(G), u,v € V(G)\ V(C)} U
{uc’; v e V(C): uv € E(G),uc V(G)\ V(C)}.

Definition
Let C be an odd circuit in G. The graph G x C has vertices (V(G) \ V(C)) U {c¢'}
where ¢’ is a new vertex and edges @
@ E(G) with both end-vertices in V(G) \ V(C) and
@ and uc’ for every edge uv with u ¢ V(C) and v € V(C).
Edges E(C) are removed.

Proposition

Let C be an odd circuit of G and M’ be a matching G x C. Then, there exists a
matching M of G such that M C M’ U E(C) and the number of M’-exposed nodes of G
is the same as the number of M’-exposed nodes in G x C.

def(G) < def(G x C)

There exists a graph G with odd circuit C such that def(G) < def(G x C).
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Perfect matching in general graphs Perfect matchings algorithm in a non-weighted graph
1 4
Use uv to shrink and update M’ and T Al

Input: A matching M’ of a graph G', an M'-alternating tree T, edge uv € E’

such that u,v € B 1 Init: M:=0
Action: Let C be the circuit formed by uv together with the path in T from u to v. 2 whiIe/G conral/ns an M-exposed vertex r do
Replace 3 | M=MG=Gand T =({r},0)
e GbyG xC while there exists uv € E(G') withu € B and v ¢ A do

if v € Bthen
Use uv to shrink and update M’ and T

else if v is M’-covered then

| Use uvtoextend T
else
Use uv to augment M’
Extend M’ to a matching M of G
break # Terminate the inner loop.

if r is still M-exposed then
| return There is no perfect matching

o M by M\ E(C)
@ T by the tree having edge-set E(T) \ E(C).

Let G’ be a graph obtained from G by a sequence of odd-circuit shrinkings. Let M’ be
matching of G’ and let T be an M’ alternating tree of G’ such that all vertices of A are
original vertices of G. If T is frustrated, then G has no perfect matching.

© ® N @ a &

o 3o

©

>

Proof is based on Tutte’s matching theore

s return Perfect matching M

A graph G has a perfect matching if and only if oc(G \ A) < |A| for every AC V.
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Perfect matchings algorithm in a non-weighted graph | Minimum-Weight perfect matchings in general graphs

Algorithm

1 nit M =0, G =G Let M be a perfect matching of G and D be an odd set of vertices of G. Then there
2 while G’ contains an M’ -exposed vertex r do exists at least one edge uv € M between D and V' \ D.
s | T=({r}.0)
hile r is M'- d do : : — : : :

: v Iif t;;sre engzsfe E(G)) withu € B and v ¢ Athen Linear programming for Minimum-Weight perfect matchings in general graphs
6 if v € B then Minimize cx
7 | Use wv to shrink and update M’ and T subjectto 6“x = 1 forallue V
8 else if v is M’ -covered then °x > 1 foralDec
9 | Use uvtoextend T x > 0
10 else
1" Use uv to augment M’ Where 6° € {0, 1} is a vector such that 62, = 1 if [uv N D| = 1 and 6* = 61"} and C is
12 else if there exists a pseudonode u in A then the set of all odd-size subsets of V.
13 | Expand u into a circuit and update T, M’ and G’
w | | else . .
15 \ return There is no perfect matching

L - . ; Let G be a graph and ¢ € RE. Then G has a perfect matching if and only if the LP
16 Expand all pseudonodes and obtain M from M problem is feasible. Moreover, if G has a perfect matching, the minimum weight of a
17 return Perfect matching M perfect matching is equal to the optimal value of the LP problem.
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Minimum-Weight perfect matchings in general graphs: Duality Minimum-Weight perfect matchings in general graphs: Change of y

Updates weights and dual solution when shrinking a circuit C

Minimize  ¢x Replace ¢;, by ¢, — y, forue Cand v ¢ C and set y;, = 0 for the new vertex c'.
subjectto d'x = 1 forallueV Note that the reduced cost is unchanged.
°x > 1 foralDecC
e e
@ Replace ¢, by ¢, +y,forue Candv ¢ C
Maximize >vev ¥y + 2 pec 2o @ Update M’ and T

< cw foraluveE
>0

subjectto ¥, +Y, + >, epec 2D
Z Change of y and z on a frustrated tree

Notation: Reduced cost Input: A graph G’ with weights ¢’, a feasible dual solution y’, a matching M’ of

- tight edges of G’ and an M'-alternating tree T of tight edges of G'.
Cu = 0uv—yu—yV—ZW€DEcz g 9 [¢] [¢] g

D q . - . . .
An edge eiis tight if ¢ = 0 and let £, be the set of tight edges. REiEE O & =il {c_e,; e joins a vertex in B.and a vertex not in T}
e = min {€.'/2; e joins two vertices of B}

°
§ ¢ =min{yy; v € Aand vis apseudonods of G}
@ ¢ = min{e1, €2, €3}
°
°

@ Xxe > 0implies eis tight for all e € E Replace y, by y, + eforallv e B
@ zp > 0implies 6°x = 1 forall D e C Replace y, by y, —eforallv e A
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Minimal weight perfect matchings algorithm in a general graph

1 it M :=0,G =G
2 while G’ contains an M’ -exposed vertex r do
s | T=({r}.0)

4 while r is M’ -exposed do

5 if there exists uv € E_(G') withu € B and v ¢ Athen
6 if v € Bthen

7 \ Use uv to shrink and update M’ and T

8 else if v is M'-covered then

9 | Use uvtoextend T

10 else

1 | Use uv to augment M’

12 else if there exists a pseudonode u in A with y,, = 0 then
13 | Expand uinto a circuit and update T, M’ and G’
14 else

15 Determine ¢ and change y

16 if e = oo then

17 | return There is no perfect matching

18 E;pand all pseudonodes and obtain M from M’
19 return Perfect matching M
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Maximum-weight (general) matching

duction to perfect matching proble|

Let G be a graph with weights ¢ € RE.
@ Let G; and G; be two copies of G
@ Let P be a perfect matching between G; and G. joining copied vertices
@ Let G* be a graph of vertices V(Gi) U V(G:) and edges E(Gi) U E(Gz2) U P
@ For e € E(G1) U E(Gz) let ¢*(e) be the weight of the original edge e on G
@ Forec Pletc*(e)=0

The maximal weight of a perfect matching in G* equals twice the maximal weight of a
matching in G.

For maximal-size matching, use weights ¢ = 1.

Tutte’s matching theorem
A graph G has a perfect matching if and only if oc(G \ A) < |A| for every AC V.

Jirka Fink Optimization methods 108




	Linear programming
	Linear, affine and convex sets
	Convex polyhedron
	Simplex method
	Duality of linear programming
	Ellipsoid method
	Matching

