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Example of linear programming: Optimized diet

Express using linear programming the following problem
Find the cheapest vegetable salad from carrots, white cabbage and cucumbers
containing required amount the vitamins A and C and dietary fiber.

Food Carrot White cabbage Cucumber Required per meal
Vitamin A [mg/kg] 35 0.5 0.5 0.5 mg
Vitamin C [mg/kg] 60 300 10 15 mg
Dietary fiber [g/kg] 30 20 10 4 g
Price [EUR/kg] 0.75 0.5 0.15

Formulation using linear programming

Carrot White cabbage Cucumber
Minimize 0.75xxx1 + 0.5xxx2 + 0.15xxx3 Cost
subject to 35xxx1 + 0.5xxx2 + 0.5xxx3 ≥ 0.5 Vitamin A

60xxx1 + 300xxx2 + 10xxx3 ≥ 15 Vitamin C
30xxx1 + 20xxx2 + 10xxx3 ≥ 4 Dietary fiber

xxx1,xxx2,xxx3 ≥ 0
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Matrix notation of the linear programming problem

Formulation using linear programming

Minimize 0.75xxx1 + 0.5xxx2 + 0.15xxx3

subject to 35xxx1 + 0.5xxx2 + 0.5xxx3 ≥ 0.5
60xxx1 + 300xxx2 + 10xxx3 ≥ 15
30xxx1 + 20xxx2 + 10xxx3 ≥ 4

xxx1,xxx2,xxx3 ≥ 0

Matrix notation
Minimize 0.75

0.5
0.15

T xxx1

xxx2

xxx3


Subject to 35 0.5 0.5

60 300 10
30 20 10

xxx1

xxx2

xxx3

 ≥
0.5

15
4


and xxx1,xxx2,xxx3 ≥ 0
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Notation: Vector and matrix

Scalar
A scalar is a real number. Scalars are written as a, b, c, etc.

Vector
A vector is an n-tuple of real numbers. Vectors are written as ccc, xxx , yyy , etc. Usually,
vectors are column matrices of type n × 1.

Matrix
A matrix of type m × n is a rectangular array of m rows and n columns of real numbers.
Matrices are written as A, B, C, etc.

Special vectors
000 and 111 are vectors of zeros and ones, respectively.

Transpose

The transpose of a matrix A is matrix AT created by reflecting A over its main diagonal.
The transpose of a column vector xxx is the row vector xxxT.
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Notation: Matrix product

Elements of a vector and a matrix
The i-th element of a vector xxx is denoted by xxx i .

The (i , j)-th element of a matrix A is denoted by Ai,j .

The i-th row of a matrix A is denoted by Ai,?.

The j-th column of a matrix A is denoted by A?,j .

Dot product of vectors

The dot product (also called inner product or scalar product) of vectors xxx ,yyy ∈ Rn is the
scalar xxxTyyy =

∑n
i=1 xxx iyyy i .

Product of a matrix and a vector

The product Axxx of a matrix A ∈ Rm×n of type m × n and a vector xxx ∈ Rn is a vector
yyy ∈ Rm such that yyy i = Ai,?xxx for all i = 1, . . . ,m.

Product of two matrices

The product AB of a matrix A ∈ Rm×n and a matrix B ∈ Rn×k a matrix C ∈ Rm×k such
that C?,j = AB?,j for all j = 1, . . . , k .
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Notation: System of linear equations and inequalities

Equality and inequality of two vectors

For vectors xxx ,yyy ∈ Rn we denote

xxx = yyy if xxx i = yyy i for every i = 1, . . . , n and

xxx ≤ yyy if xxx i ≤ yyy i for every i = 1, . . . , n.

System of linear equations

Given a matrix A ∈ Rm×n of type m × n and a vector bbb ∈ Rm, the formula Axxx = bbb
means a system of m linear equations where xxx is a vector of n real variables.

System of linear inequalities

Given a matrix A ∈ Rm×n of type and a vector bbb ∈ Rm, the formula Axxx ≤ bbb means a
system of m linear inequalities where xxx is a vector of n real variables.

Example: System of linear inequalities in two different notations

2xxx1 + xxx2 + xxx3 ≤ 14
2xxx1 + 5xxx2 + 5xxx3 ≤ 30

(
2 1 1
2 5 5

)xxx1

xxx2

xxx3

 ≤ (14
30

)
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Optimization

Mathematical optimization
Mathematical optimization is the selection of a best element (with regard to some
criteria) from some set of available alternatives.

Examples

Minimize x2 + y2 where (x , y) ∈ R2

Maximal matching in a graph

Minimal spanning tree

Shortest path between given two vertices

Optimization problem
Given a set of solutions M and an objective function f : M → R, optimization problem is
finding a solution x ∈ M with the maximal (or minimal) objective value f (x) among all
solutions of M.

Duality between minimization and maximization
If minx∈M f (x) exists, then also maxx∈M −f (x) exists and
−minx∈M f (x) = maxx∈M −f (x).
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Linear Programming

Linear programming problem
A linear program is the problem of maximizing (or minimizing) a given linear function
over the set of all vectors that satisfy a given system of linear equations and
inequalities.

Equation form: mincccTxxx subject to Axxx = bbb,xxx ≥ 000

Canonical form: maxcccTxxx subject to Axxx ≤ bbb,

where ccc ∈ Rn, bbb ∈ Rm, A ∈ Rm×n a xxx ∈ Rn.

Conversion from the equation form to the canonical form

max−cccTxxx subject to Axxx ≤ bbb,−Axxx ≤ −bbb,−xxx ≤ 000

Conversion from the canonical form to the equation form

min−cccTxxx ′ + cccTxxx ′′ subject to Axxx ′ − Axxx ′′ + Ixxx ′′′ = bbb, xxx ′,xxx ′′,xxx ′′′ ≥ 000
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Terminology

Basic terminology
Number of variables: n

Number of constrains: m

Solution: an arbritrary vector xxx of Rn

Objective function: a function to be minimized or maximized, e.g. maxcccTxxx

Feasible solution: a solution satisfying all constrains, e.g. Axxx ≤ bbb

Optimal solution: a feasible solution maximizing cccTxxx

Infeasible problem: a problem having no feasible solution

Unbounded problem: a problem having a feasible solution with arbitrary large
value of given objective function

Polyhedron: a set of points xxx ∈ Rn satisfying Axxx ≤ bbb for some A ∈ Rm×n and
bbb ∈ Rm

Polytope: a bounded polyhedron
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Example of linear programming: Network flow

Network flow problem

Given a direct graph (V ,E) with capacities ccc ∈ RE and a source s ∈ V and a sink
t ∈ V , find the maximal flow from s to t satisfying the flow conservation and capacity
constrains.

Formulation using linear programming
Variables: Flow xxxe for every edge e ∈ E

Capacity constrains: 000 ≤ xxx ≤ ccc

Flow conservation:
∑

uv∈E xxxuv =
∑

vw∈E xxxvw for every v ∈ V \ {s, t}
Objective function: Maximize

∑
sw∈E xxxsw −

∑
us∈E xxxus

Matrix notation
• Add an auxiliary edge xxx ts with a sufficiently large capacity cccts

Objective function: maxxxx ts

Flow conservation: Axxx = 000 where A is the incidence matrix

Capacity constrains: xxx ≤ ccc and xxx ≥ 0
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Graphical method: Set of feasible solutions

Example
Draw the set of all feasible solutions (xxx1,xxx2) satisfying the following conditions.

xxx1 + 6xxx2 ≤ 15
4xxx1 − xxx2 ≤ 10
−xxx1 + xxx2 ≤ 1

xxx1,xxx2 ≥ 0

Solution

xxx1 ≥ 0 xxx2 − xxx1 ≤ 1

xxx1 + 6xxx2 ≤ 15

4xxx1 − xxx2 ≤ 10

xxx2 ≥ 0

(0, 0)
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Graphical method: Optimal solution

Example
Find the optimal solution of the following problem.

Maximize xxx1 + xxx2

xxx1 + 6xxx2 ≤ 15
4xxx1 − xxx2 ≤ 10
−xxx1 + xxx2 ≤ 1

xxx1,xxx2 ≥ 0

Solution

(0, 0)

(3, 2)

(1, 1)

cccTxxx = 0

cccTxxx = 1

cccTxxx = 2

cccTxxx = 5
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Graphical method: Multiple optimal solutions

Example
Find all optimal solutions of the following problem.

Maximize 1
6xxx1 + xxx2

xxx1 + 6xxx2 ≤ 15
4xxx1 − xxx2 ≤ 10
−xxx1 + xxx2 ≤ 1

xxx1,xxx2 ≥ 0

Solution

(0, 0)

( 1
6 , 1)

cccTxxx = 10
3
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Graphical method: Unbounded problem

Example
Show that the following problem is unbounded.

Maximize xxx1 + xxx2

−xxx1 + xxx2 ≤ 1
xxx1,xxx2 ≥ 0

Solution

(0, 0)

(1, 1)
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Graphical method: Infeasible problem

Example
Show that the following problem has no feasible solution.

Maximize xxx1 + xxx2

xxx1 + xxx2 ≤ −2
xxx1,xxx2 ≥ 0

Solution

xxx2 ≥ 0
xxx1 ≥ 0

xxx1 + xxx2 ≤ −2

(0, 0)
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Related problems

Integer linear programming

Integer linear programming problem is an optimization problem to find xxx ∈ Zn which
maximizes cccTxxx and satisfies Axxx ≤ bbb where A ∈ Rm×n and bbb ∈ Rm.

Mix integer linear programming
Some variables are integer and others are real.

Binary linear programming
Every variable is either 0 or 1.

Complexity
A linear programming problem is efficiently solvable, both in theory and in practice.

The classical algorithm for linear programming is the Simplex method which is fast
in practice but it is not known whether it always run in polynomial time.

Polynomial time algorithms are ellipsoid and interior point methods.

No strongly polynomial-time algorithms for linear programming is known.

Integer linear programming is NP-hard.
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Example of integer linear programming: Vertex cover

Vertex cover problem
Given an undirected graph (V ,E), find the smallest set of vertices U ⊆ V covering
every edge of E ; that is, U ∪ e 6= ∅ for every e ∈ E .

Formulation using integer linear programming
Variables: Cover xxxv ∈ {0, 1} for every vertex v ∈ V

Covering: xxxu + xxxv ≥ 1 for every edge uv ∈ E

Objective function: Minimize
∑

v∈V xxxv

Matrix notation

Variables: Cover xxx ∈ {0, 1}V (i.e. 000 ≤ xxx ≤ 111 and xxx ∈ ZV )

Covering: ATxxx ≥ 111 where A is the incidence matrix

Objective function: Minimize 111Txxx

Jirka Fink Optimization methods 21

Relation between optimal integer and relaxed solution

Non-empty polyhedron may not contain an integer solution

Integer feasible solution may not be obtained by rounding of a relaxed solution

c

Relaxed optimum

Integral optimum
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Example: Ice cream production planning

Problem description
An ice cream manufacturer needs to plan production of ice cream for next year

The estimated demand of ice cream for month i ∈ {1, . . . , n} is ddd i (in tons)

Price for storing ice cream is a per ton and month

Changing the production by 1 ton from month i − 1 to month i cost b

Produced ice cream cannot be stored longer than one month

The total cost has to be minimized
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Example: Ice cream production planning

Solution
1 Variable xxx i determines the amount of produced ice cream in month i ∈ {0, . . . , n}
2 Variable sssi determines the amount of stored ice cream from month i − 1 month i
3 The stored quantity is computed by sssi = sssi−1 + xxx i − ddd i for every i ∈ {1, . . . , n}
4 Durability is ensured by sssi ≤ ddd i for all i ∈ {1, . . . , n}
5 Non-negativity of the production and the storage xxx ,sss ≥ 000
6 Objective function min b

∑n
i=1 |xxx i − xxx i−1|+ a

∑n
i=1 sssi is non-linear

7 We introduce variables yyy i for i ∈ {1, . . . , n} to avoid the absolute value
8 Linear programming problem formulation

Minimize b
∑n

i=1 yyy i + a
∑n

i=1 sssi

subject to sssi−1 − sssi + xxx i = ddd i for i ∈ {1, . . . , n}
sssi ≤ ddd i for i ∈ {1, . . . , n}

xxx i − xxx i−1 − yyy i ≤ 0 for i ∈ {1, . . . , n}
−xxx i + xxx i−1 − yyy i ≤ 0 for i ∈ {1, . . . , n}

xxx ,sss,yyy ≥ 000

9 We can bound the initial and final amount of ice cream sss0 a sssn

10 and also bound the production xxx0
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Finding shortest paths from a vertex s in an oriented graph

Shortest path problem

Given an oriented graph (V ,E) with length of edges ccc ∈ Zn and a starting vertex s, find
the length of a shortest path from s to all vertices.

Linear programming problem

Maximize
∑

u∈V xxxu

subject to xxxv − xxxu ≤ cccuv for every edge uv
xxxs = 0

Proof (optimal solution xxx?u of LP gives the distance from s to u for ∀u ∈ V )
1 Let yyyu be the length of a shortest path from s to u
2 It holds that yyy ≥ xxx?

Let P be edges on the shortest path from s to z
yyyz =

∑
uv∈P cccuv ≥

∑
uv∈P xxx?v − xxx?u = xxx?z − yyy?s = xxx?z

3 It holds that yyy = xxx?

For the sake of contradiction assume that yyy 6= xxx?
So yyy ≥ xxx? and

∑
u∈V yyyu >

∑
u∈V xxx?u

But yyy is a feasible solution and xxx? is an optimal solution
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Linear space

Definition: Linear (vector) space
A set (V ,+, ·) is called a linear (vector) space over a field T if

+ : V × V → V i.e. V is closed under addition +

· : T × V → V i.e. V is closed under multiplication by T

(V ,+) is an Abelian group

For every xxx ∈ V it holds that 1 · xxx = xxx where 1 ∈ T

For every a, b ∈ T and every xxx ∈ V it holds that (ab) · xxx = a · (b · xxx)

For every a, b ∈ T and every xxx ∈ V it holds that (a + b) · xxx = a · xxx + b · xxx
For every a ∈ T and every xxx ,yyy ∈ V it holds that a · (xxx + yyy) = a · xxx + a · yyy

Observation
If V is a linear space and L ⊆ V , then L is a linear space if and only if

000 ∈ L,

xxx + yyy ∈ L for every xxx ,yyy ∈ L and

αxxx ∈ L for every xxx ∈ L and α ∈ T .
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Linear and affine spaces in Rn

Observation
A non-empty set V ⊆ Rn is a linear space if and only if αxxx + βyyy ∈ V for all α, β ∈ R,
xxx ,yyy ∈ V .

Definition
If V ⊆ Rn is a linear space and aaa ∈ Rn is a vector, then V + aaa is called an affine space
where V + aaa = {xxx + aaa; xxx ∈ V}.

Basic observations
If L ⊆ Rn is an affine space, then L + xxx is an affine space for every xxx ∈ Rn.

If L ⊆ Rn is an affine space, then L− xxx is a linear space for every xxx ∈ L. 1

If L ⊆ Rn is an affine space, then L− xxx = L− yyy for every xxx ,yyy ∈ L. 2

An affine space L ⊆ Rn is linear if and only if L contains the origin 000. 3

System of linear equations
The set of all solutions of Axxx = 000 is a linear space and every linear space is the
set of all solutions of Axxx = 000 for some A. 4

The set of all solutions of Axxx = bbb is an affine space and every affine space is the
set of all solutions of Axxx = bbb for some A and bbb, assuming Axxx = bbb is consistent. 5
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1 By definition, L = V + aaa for some linear space V and some vector aaa ∈ Rn.
Observe that L− xxx = V + (aaa− xxx) and we prove that V + (aaa− xxx) = V which
implies that L− xxx is a linear space. There exists yyy ∈ V such that xxx = yyy + aaa.
Hence, aaa− xxx = aaa− yyy − aaa = −yyy ∈ V . Since V is closed under addition, it follows
that V + (aaa− xxx) ⊆ V . Similarly, V − (aaa− xxx) ⊆ V which implies that
V ⊆ V + (aaa− xxx). Hence, V = V + (aaa− xxx) and the statement follows.

2 We proved that L = V + aaa for some linear space V ⊆ Rn and some vector aaa ∈ Rn

and L− xxx = V + (aaa− xxx) = V for every xxx ∈ L. So, L− xxx = V = L− yyy .
3 Every linear space must contain the origin by definition. For the opposite

implication, we set xxx = 000 and apply the previous statement.
4 If V is a linear space, then we can obtain rows of A from the basis of the

orthogonal space of V .
5 If L is an affine space, then L = V + aaa for some vector space V and some vector aaa

and there exists a matrix A such that V = {xxx ; Axxx = 000}. Hence,
V + aaa = {xxx + aaa; Axxx = 000} = {yyy ; Ayyy − Aaaa = 000} = {yyy ; Ayyy = bbb} where we
substitute xxx + aaa = yyy and set bbb = Aaaa.
If L = {xxx ; Axxx = bbb} is non-empty, then let yyy be an arbitrary vertex of L.
Furthermore, L− yyy = {xxx − yyy ; Axxx = bbb} = {zzz; Ayyy + Azzz = bbb} = {zzz; Azzz = 000} is a
linear space since Ayyy = bbb.
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Convex set

Observation (Exercise)

A set S ⊆ Rn is an affine space if and only if S contains whole line given every two
points of S.

Definition
A set S ⊆ Rn is convex if S contains whole segment between every two points of S.

Example

a

b

u

v
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Linear, affine and convex hulls

Observation

The intersection of linear spaces is also a linear space. 1

The non-empty intersection of affine spaces is an affine space. 2

The intersection of convex sets is also a convex set. 3

Definition
Let S ⊆ Rn be an non-empty set.

The linear hull span(S) of S is the intersection of all linear sets containing S.

The affine hull aff(S) of S is the intersection of all affine sets containing S.

The convex hull conv(S) of S is the intersection of all convex sets containing S.

Observation
Let S ⊆ Rn be an non-empty set.

A set S is linear if and only if S = span(S). 4

A set S is affine if and only if S = aff(S). 5

A set S is convex if and only if S = conv(S). 6

span(S) = aff(S ∪ {000})
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1 Use definition and logic.
2 Let Li be affine space for i in an index set I and L = ∩i∈ILi and aaa ∈ L. We proved

that L− aaa =
⋂

i∈I(Li − aaa) is a linear space which implies that L is an affine space.
3 Use definition and logic.
4 Similar as the convex version.
5 Similar as the convex version.
6 We proved that conv(S) is convex, so if S = conv(S), then S is convex. In order to

prove that S = conv(S) if S is convex, we observe that conv(S) ⊆ S since
conv(S) =

⋂
M⊇S,M convex M and S is included in this intersection. Similarly,

conv(S) ⊇ S since every M in the intersection contains S.
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Linear, affine and convex combinations

Definition
Let vvv1, . . . ,vvv k be vectors of Rn where k is a positive integer.

The sum
∑k

i=1 αivvv i is called a linear combination if α1, . . . , αk ∈ R.

The sum
∑k

i=1 αivvv i is called an affine combination if α1, . . . , αk ∈ R,
∑k

i=1 αi = 1.

The sum
∑k

i=1 αivvv i is called a convex combination if α1, . . . , αk ≥ 0 and∑k
i=1 αi = 1.

Lemma
Let S ⊆ Rn be a non-empty set.

The set of all linear combinations of S is a linear space. 1

The set of all affine combinations of S is an affine space. 2

The set of all convex combinations of S is a convex set. 3

Lemma

A linear space S contains all linear combinations of S. 4

An affine space S contains all affine combinations of S. 5

A convex set S contains all convex combinations of S. 6
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1 We have to verify that the set of all linear combinations has closure under addition
and multiplication by scalars. In order to verify the closure under multiplication, let∑k

i=1 αivvv i be a linear combination of S and c ∈ R be a scalar. Then,
c
∑k

i=1 αivvv i =
∑k

i=1(cαi )vvv i is a linear combination of of S. Similarly, the set of all
linear combinations has closure under addition and it contains the origin.

2 Similar as the convex version: Show that S contains whole line defined by
arbitrary pair of points of S.

3 Let
∑k

i=1 αiuuu i and
∑l

j=1 βjvvv j be two convex combinations of S. In order to prove
that the set of all convex combinations of S contains the line segment between∑k

i=1 αiuuu i and
∑l

j=1 βjvvv j , let us consider γ1, γ2 ≥ 0 such that γ1 + γ2 = 1. Then,
γ1
∑k

i=1 αiuuu i + γ2
∑l

j=1 βjvvv j =
∑k

i=1(γ1αi )uuu i +
∑l

j=1(γ2βj )vvv j is a convex
combination of S since (γ1αi ), (γ2βj ) ≥ 0 and

∑k
i=1(γ1αi ) +

∑l
j=1(γ2βj ) = 1.

4 Similar as the convex version.
5 Let

∑k
i=1 αivvv i be an affine combination of S. Since S − vvv k is a linear space, the

linear combination
∑k

i=1 αi (vvv i − vvv k ) of S − vvv k belongs into S − vvv k . Hence,
vvv k +

∑k
i=1 αi (vvv i − vvv k ) =

∑k
i=1 αivvv i belongs to S.

6 We prove by induction on k that S contains every convex combination
∑k

i=1 αivvv i of
S. The statement holds for k ≤ 2 by the definition of a convex set. Let

∑k
i=1 αivvv i

be a convex combination of k vectors of S and we assume that αk < 1, otherwise
α1 = · · · = αk−1 = 0 so

∑k
i=1 αivvv i = vvv k ∈ S. Hence,∑k

i=1 αivvv i = (1− αk )
∑k

i=1
αi

1−αk
vvv i + αkvvv k = (1− αk )yyy + αkvvv k where we observe
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that yyy :=
∑k

i=1
αi

1−αk
vvv i is a convex combination of k − 1 vectors of S which by

induction belongs to S. Furthermore, (1− αk )yyy + αkvvv k is a convex combination of
S which by induction also belongs to S.
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Linear, affine and convex combinations

Theorem
Let S ⊆ Rn be a non-empty set.

The linear hull of a set S is the set of all linear combinations of S. 1

The affine hull of a set S is the set of all affine combinations of S. 2

The convex hull of a set S is the set of all convex combinations of S. 3
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1 Similar as the convex version.
2 Similar as the convex version.
3 Let T be the set of all convex combinations of S. First, we prove that conv(S) ⊆ T .

The definition states that conv(S) =
⋂

M⊇S,M convex M and we proved that T is a
convex set containing S, so T is included in this intersection which implies that
conv(S) is a subset of T .
In order to prove conv(S) ⊇ T , we again consider the intersection
conv(S) =

⋂
M⊇S,M convex M. We proved that a convex set M contains all convex

combinations of M which implies that if M ⊇ S then M also contains all convex
combinations of S. So, in this intersection every M contains T which implies that
conv(S) ⊇ T .
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Independence and base

Definition
A set of vectors S ⊆ Rn is linearly independent if no vector of S is a linear
combination of other vectors of S.

A set of vectors S ⊆ Rn is affinely independent if no vector of S is an affine
combination of other vectors of S.

Observation (Exercise)

Vectors vvv1, . . . ,vvv k ∈ Rn are linearly dependent if and only if there exists a
non-trivial combination α1, . . . , αk ∈ R such that

∑k
i=1 αivvv i = 000.

Vectors vvv1, . . . ,vvv k ∈ Rn are affinely dependent if and only if there exists a
non-trivial combination α1, . . . , αk ∈ R such that

∑k
i=1 αivvv i = 000 a

∑k
i=1 αi = 0.

Observation
Vectors vvv0, . . . ,vvv k ∈ Rn are affinely independent if and only if vectors
vvv1 − vvv0, . . . ,vvv k − vvv0 are linearly independent. 1

Vectors vvv1, . . . ,vvv k ∈ Rn are linearly independent if and only if vectors 000,vvv1, . . . ,vvv k

are affinely independent. 2
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1 If vectors vvv1 − vvv0, . . . ,vvv k − vvv0 are linearly dependent, then there exists a
non-trivial combination α1, . . . , αk ∈ R such that

∑k
i=1 αi (vvv i − vvv0) = 000. In this

case, 000 =
∑k

i=1 αi (vvv i − vvv0) =
∑k

i=1 αivvv i − vvv0
∑k

i=1 αi =
∑k

i=0 αivvv i is a non-trivial
affine combination with

∑k
i=0 αi = 0 where α0 = −

∑k
i=1 αi .

If vvv0, . . . ,vvv k ∈ Rn are affinely dependent, then there exists a non-trivial
combination α0, . . . , αk ∈ R such that

∑k
i=0 αivvv i = 000 a

∑k
i=0 αi = 0. In this case,

000 =
∑k

i=0 αivvv i = α0vvv0 +
∑k

i=1 αivvv i =
∑k

i=1 αi (vvv i − vvv0) is a non-trivial linear
combination of vectors vvv1 − vvv0, . . . ,vvv k − vvv0.

2 Use the previous observation with vvv0 = 000.
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Basis

Definition
Let B ⊆ Rn and S ⊆ Rn.

B is a base of a linear space S if B are linearly independent and span(B) = S.

B is an base of an affine space S if B are affinely independent and aff(B) = S.

Observation
All linear bases of a linear space have the same cardinality.

All affine bases of an affine space have the same cardinality. 1

Observation
Let S be a linear space and B ⊆ S \ {000}. Then, B is a linear base of S if and only if
B ∪ {000} is an affine base of S.

Definition
The dimension of a linear space is the cardinality of its linear base.

The dimension of an affine space is the cardinality of its affine base minus one.

The dimension dim(S) of a set S ⊆ Rn is the dimension of affine hull of S.
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1 For the sake of contradiction, let aaa1, . . . ,aaak and bbb1, . . . ,bbbl be two basis of an affine
space L = V + xxx where V a linear space and l > k . Then, aaa1 − xxx , . . . ,aaak − xxx and
bbb1 − xxx , . . . ,bbbl − xxx are two linearly independent sets of vectors of V . Hence, there
exists i such that aaa1 − xxx , . . . ,aaak − xxx ,bbbi − xxx are linearly independent, so
aaa1, . . . ,aaak ,bbbi are affinely independent. Therefore, bbbi cannot be obtained by an
affine combination of aaa1, . . . ,aaak and bbbi /∈ aff(aaa1, . . . ,aaak ) which contradicts the
assumption that aaa1, . . . ,aaak is a basis of L.
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Carathéodory

Theorem (Carathéodory)

Let S ⊆ Rn. Every point of conv(S) is a convex combinations of affinely independent
points of S. 1

Corollary

Let S ⊆ Rn be a set of dimension d . Then, every point of conv(S) is a convex
combinations of at most d + 1 points of S.
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1 Let xxx ∈ conv(S). Let xxx =
∑k

i=1 αixxx i be a convex combination of points of S with
the smallest k . If xxx1, . . . ,xxxk are affinely dependent, then there exists a combination
000 =

∑
βixxx i such that

∑
βi = 0 and βββ 6= 000. Since this combination is non-trivial,

there exists j such that βj > 0 and αj
βj

is minimal. Let γi = αi −
αjβi
βj

. Observe that

xxx =
∑

i 6=j γixxx i∑
i 6=j γi = 1

γi ≥ 0 for all i 6= j

which contradicts the minimality of k .
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Outline

1 Linear programming

2 Linear, affine and convex sets

3 Convex polyhedron

4 Simplex method

5 Duality of linear programming

6 Ellipsoid method

7 Matching
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System of linear equations and inequalities

Definition

A hyperplane is a set
{
xxx ∈ Rn; aaaTxxx = b

}
where aaa ∈ Rn \ {000} and b ∈ R.

A half-space is a set
{
xxx ∈ Rn; aaaTxxx ≤ b

}
where aaa ∈ Rn \ {000} and b ∈ R.

A polyhedron is an intersection of finitely many half-spaces.

A polytope is a bounded polyhedron.

Observation

For every aaa ∈ Rn and b ∈ R, the set of all xxx ∈ Rn satisfying aaaTxxx ≤ b is convex.

Corollary
Every polyhedron {xxx ; Axxx ≤ bbb} is convex.
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Mathematical analysis

Definition
A set S ⊆ Rn is closed if S contains the limit of every converging sequence of
points of S .

A set S ⊆ Rn is bounded if there exists b ∈ R s.t. for every xxx ∈ S holds ||xxx || < b.

A set S ⊆ Rn is compact if every sequence of points of S contains a converging
subsequence with limit in S.

Theorem
A set S ⊆ Rn is compact if and only if S is closed and bounded.

Theorem
If f : S → R is a continuous function on a compact set S ⊆ Rn, then S contains a point
xxx maximizing f over S; that is, f (xxx) ≥ f (yyy) for every yyy ∈ S.

Definition
Infimum of a set S ⊆ R is inf(S) = max {b ∈ R; b ≤ x ∀x ∈ S}.
Supremum of a set S ⊆ R is sup(S) = min {b ∈ R; b ≥ x ∀x ∈ S}.
inf(∅) =∞ and sup(∅) = −∞
inf(S) = −∞ if S has no lower bound
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Hyperplane separation theorem

Theorem (strict version)

Let C,D ⊆ Rn be non-empty, closed, convex and disjoint sets and C be bounded.
Then, there exists a hyperplane aaaTxxx = b which strictly separates C and D;
that is C ⊆

{
xxx ;aaaTxxx < b

}
and D ⊆

{
xxx ;aaaTxxx > b

}
.

Example

aaaTxxx > b

aaaTxxx < b

D

C
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Hyperplane separation theorem

Theorem (strict version)

Let C,D ⊆ Rn be non-empty, closed, convex and disjoint sets and C be bounded.
Then, there exists a hyperplane aaaTxxx = b which strictly separates C and D;
that is C ⊆

{
xxx ;aaaTxxx < b

}
and D ⊆

{
xxx ;aaaTxxx > b

}
.

Proof (overview)
1 Find ccc ∈ C and ddd ∈ D with minimal distance ||ddd − ccc||.

1 Let m = inf {||ddd − ccc||; ccc ∈ C,ddd ∈ D}.
2 For every n ∈ N there exists cccn ∈ C and dddn ∈ D such that ||dddn − cccn|| ≤ m + 1

n .
3 Since C is compact, there exists a subsequence

{
ccckn

}∞
n=1 converging to ccc ∈ C.

4 There exists z ∈ R such that for every n ∈ N the distance ||dddn − ccc|| is at most z. 1

5 Since the set D ∩ {xxx ∈ Rn; ||xxx − ccc|| ≤ z} is compact, the sequence
{

dddkn

}∞
n=1 has a

subsequence
{

ddd ln
}∞

n=1 converging to ddd ∈ D.
6 Observe that the distance ||ddd − ccc|| is m. 2

2 The required hyperplane is aaaTxxx = b where aaa = ddd − ccc and b = aaaTccc+aaaTddd
2

1 We prove that aaaTccc′ ≤ aaaTccc < b < aaaTddd ≤ aaaTddd ′ for every ccc′ ∈ C and ddd ′ ∈ D. 3

2 Since C is convex, y = ccc + α(ccc′ − ccc) ∈ C for every 0 ≤ α ≤ 1.
3 From the minimality of the distance ||ddd − ccc|| it follows that ||ddd − y ||2 ≥ ||ddd − ccc||2.
4 Using elementary operations observe that α2 ||ccc

′ − ccc||2 + aaaTccc ≥ aaaTccc′ 4

5 which holds for arbitrarily small α > 0, it follows that aaaTccc ≥ aaaTccc′ holds.
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1 ||dddn − ccc|| ≤ ||dddn − cccn||+ ||cccn − ccc|| ≤ m + 1 + max {||c′ − c′′||; c′, c′′ ∈ C} = z
2 ||ddd − ccc|| ≤ ||ddd − ddd ln ||+ ||ddd ln − ccc ln ||+ ||ccc ln − ccc|| → m
3 The inner two inequalities are obvious. We only prove the first inequality since the

last one is analogous.
4

||ddd − y ||2 ≥ ||ddd − ccc||2

(ddd − ccc − α(ccc′ − ccc))
T
(ddd − ccc − α(ccc′ − ccc)) ≥ (ddd − ccc)T(ddd − ccc)

α2(ccc′ − ccc)
T
(ccc′ − ccc)− 2α(ddd − ccc)T(ccc′ − ccc) ≥ 0

α

2
||ccc′ − ccc||2 + aaaTccc ≥ aaaTccc′
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Faces of a polyhedron

Definition

Let P be a polyhedron. A half-space αααTxxx ≤ β is called a supporting hyperplane of P if
the inequality αααTxxx ≤ β holds for every x ∈ P and the hyperplane αααTxxx = β has a
non-empty intersection with P.
The set of point in the intersetion P ∩

{
xxx ; αααTxxx = β

}
is called a face of P. By

convention, the empty set and P are also faces, and the other faces are proper faces.
1

Definition
Let P be a d-dimensional polyhedron.

A 0-dimensional face of P is called a vertex of P.

A 1-dimensional face is of P called an edge of P.

A (d − 1)-dimensional face of P is called an facet of P.
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1 Observe, that every face of a polyhedron is also a polyhedron.
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Minimal defining system of a polyhedron

Definition

P =
{
xxx ∈ Rn; A′xxx = bbb′, A′′xxx ≤ bbb′′

}
is a minimal defining system of a polyherdon P if

no condition can be removed and

no inequality can be replaced by equality

without changing the polyhedron P.

Observation
Every polyhedron has a minimal defining system.

Lemma

Let P =
{
xxx ∈ Rn; A′xxx = bbb′, A′′xxx ≤ bbb′′

}
be a minimal defining system of a polyherdon

P. Let P′ =
{
xxx ∈ P; A′′i,?xxx = bbb′′i

}
for some row i of A′′xxx ≤ bbb′′. Then dim(P′) < dim(P).

1

Corollary
Let P = {x ; Axxx ≤ bbb} of dimension d . Then for every row i , either

P ∩ {x ; Ai,?xxx = bbbi} = P or

P ∩ {x ; Ai,?xxx = bbbi} = ∅ or

P ∩ {x ; Ai,?xxx = bbbi} is a proper face of dimension at most d − 1.
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1 There exists x ∈ P \ P′. Since aff(P′) ⊆
{
xxx ; A′′i,?xxx = bbb′′i

}
, it follows that

x /∈ aff(P′). Hence, dim(P′) + 1 = dim(P′ ∪ {x}) ≤ dim(P).
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A point inside a polyhedron

Theorem
Let P be a non-empty polyhedron defined by a minimal system{
xxx ∈ Rn; A′xxx = bbb′, A′′xxx ≤ bbb′′

}
. Then,

1 there exists a point zzz ∈ P such that A′′zzz < bbb′′ and
2 dim(P) = n − rank(A′), and
3 and zzz does not belong in any proper face of P.

Proof
1 There exists a point zzz ∈ P such that A′′zzz < bbb′′.

1 For every row i of A′′xxx ≤ bbb′′ there exists zzz i ∈ P such that A′′i,?zzz
i < bbb′′i .

2 Let zzz = 1
m′′
∑m′′

i=1 zzz i be the center of gravity.
3 Since zzz is a convex combination of points of P, point zzz belongs to P and A′′zzz < bbb′′.

2 dim(P) = n − rank(A′)
1 Let L be the affine space defined by A′xxx = bbb′.
2 There exists ε > 0 such that P contains whole ball B = {xxx ∈ L; ||x − z|| ≤ ε}.
3 Vectors of a base of the linear space L− z can be scaled so that they belong into B− z.
4 dim(L) ≥ dim(P) ≥ dim(B) ≥ dim(L) = n − rank(A′).

3 The point zzz does not belong in any proper face of p.
1 The point zzz cannot belong into any proper face of P because a supporting hyperplane

of such a face split the ball B.
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A bijection between faces and inequalities

Theorem

Let P =
{
xxx ∈ Rn; A′xxx = bbb′, A′′xxx ≤ bbb′′

}
be a minimal defining system of a polyhedron

P. Then, there exists a bijection between facets of P and inequalities A′′xxx ≤ bbb′′.

Proof
1 Let Ri =

{
xxx ; A′′i,?xxx = bbbi

}
and Fi = P ∩ Ri .

2 From minimality if follows that Ri is a supporting hyperplane, and therefore, Fi is a
face.

3 There exists a point yyy i ∈ Fi satisfying A′′j,?yyy
i < bbb′′j for all j 6= i . 1

4 So dim(Fi ) = dim(P)− 1 and Fi is a facet.
5 Furthermore, yyy i /∈ Fj for all j 6= i , so Fi 6= Fj for j 6= i .
6 For contradiction, let F be an another facet.
7 There exists a facet i such F ⊆ Fi . 2

8 F is a proper face of Fi and so its dimension is at most dim(P)− 2 contradicting
the assumption that F is a proper facet.
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1 From minimality it follows that there exists xxx satifying all conditions of P except
A′′i,?xxx < bbb′′i . Let zzz be a point from the previous theorem. A point yyy i can be obtained
as a convex combination of xxx and zzz.

2 Otherwise 1
m′′
∑m′′

i=1 yyy i satisfies strictly all condition contradicting the assumption
that F is a proper facet.
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Fully dimensional polyhedron

Definition
A polyhedron P ⊆ Rn is of full-dimension if dim(P) = n.

Corollary
If P is a full-dimensional polyhedron, then P has exactly one minimal defining system
up-to multiplying conditions by constants. 1
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1 Affine space of dimension n − 1 is determined by a unique condition.
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Minkowski-Weyl

Theorem (Minkowski-Weyl)

A set S ⊆ Rn is a polytope if and only if there exists a finite set V ⊆ Rn such that
S = conv(V ).

Illustration

A1,?xxx ≤ bbb1

A2,?xxx ≤ bbb2

A3,?xxx ≤ bbb3

A4,?xxx ≤ bbb4

A5,?xxx ≤ bbb5

vvv1

vvv2

vvv3

vvv4

vvv5

{xxx ; Axxx ≤ bbb}
=

conv({vvv1, . . . ,vvv5})
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Minkowski-Weyl

Theorem (Minkowski-Weyl)

A set S ⊆ Rn is a polytope if and only if there exists a finite set V ⊆ Rn such that
S = conv(V ).

Proof of the implication ⇒ (main steps) by induction on dim(S)

For dim(S) = 0 the size of S is 1 and the statement holds. Assume that dim(S) > 0.
1 Let S =

{
xxx ∈ Rn; A′xxx = bbb′, A′′xxx ≤ bbb′′

}
be a minimal defining system.

2 Let Si =
{
xxx ∈ S; A′′i,?xxx = bbb′′i

}
where i is a row of A′′xxx ≤ bbb′′.

3 Since dim(Si ) < dim(S), there exists a finite set Vi ⊆ Rn such that Si = conv(Vi ).
4 Let V =

⋃
i Vi . We prove that conv(V ) = S.

⊆ Follows from Vi ⊆ Si ⊆ S and convexity of S.
⊇ Let xxx ∈ S. Let L be a line containing xxx .

S ∩ L is a line segment with end-vertices uuu and vvv .
There exists i, j ∈ I such that A′′i,?uuu = bbb′′i and A′′j,?vvv = bbb′′j .
Since uuu ∈ Si and vvv ∈ Sj , points uuu and vvv are convex combinations of Vi and Vj , resp.
Since xxx is a also a convex combination of uuu and vvv , we have xxx ∈ conv(V ).
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Minkowski-Weyl

Theorem (Minkowski-Weyl)

A set S ⊆ Rn is a polytope if and only if there exists a finite set V ⊆ Rn such that
S = conv(V ).

Lemma

A condition αααTvvv ≤ β is satisfied by all points vvv ∈ V if and only if the condition is
satisfied by all points vvv ∈ conv(V ).

Proof of the implication ⇐ (main steps)

1 Let Q =
{(

ααα
β

)
; ααα ∈ Rn, β ∈ R,−111 ≤ ααα ≤ 1,−1 ≤ β ≤ 1,αααTvvv ≤ β ∀vvv ∈ V

}
. 1

2 Since Q is a polytope, there exists a finite set W ⊆ Rn+1 s.t. Q = conv(W ). 2

3 Let Y =
{

xxx ∈ Rn; αααTxxx ≤ β ∀
(
ααα
β

)
∈ W

}
and we prove that conv(V ) = Y .

⊆ From V ⊆ Y it follows that conv(V ) ⊆ Y . 3

⊇ We prove that xxx /∈ conv(V )⇒ xxx /∈ Y .

There exists ααα ∈ Rn, β ∈ R s.t. αααTxxx > β and ∀vvv ∈ V : αααTvvv ≤ β 4

Assume that −111 ≤ ααα ≤ 1,−1 ≤ β ≤ 1. 5

Observe that
(ααα
β

)
∈ Q and xxx fails at least one condition of Q.

Hence, xxx fails at least one condition of W . 6
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1 Observe that αααTvvv ≤ β means the same as
( vvv
−1

)T(ααα
β

)
≤ 0. Therefore, Q is

described by |V |+ 2n + 2 inequalities. Furthermore, conditions −111 ≤ ααα ≤ 1 and
−1 ≤ β ≤ 1 implies that Q is bounded.

2 Here we use the implication⇒ of Minkovski-Weyl theorem which we already
proved.

3 Every point of V satifies all conditions of Q since Q contains only conditions
satisfied by all points of V . Since W ⊆ conv(W ) = Q, it follows that every point of
V satifies all conditions of W . Hence, V ⊆ Y . Since Y is convex, the inclusion
conv(V ) ⊆ Y .

4 Apply Hyperplane separation theorem on sets Q and {x}.
5 Scale the vector

(
ααα
β

)
so that it fit into this box.

6 Use lemma.
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Faces

Theorem
Let P be a polyhedron and V its vertices. Then, xxx is a vertex of P if and only if
xxx /∈ conv(P \ {xxx}). Furthermore, if P is bounded, then P = conv(V ).

Proof (only for bounded polyhedrons)
Let V0 be (inclusion) minimal set such that P = conv(V0).

Let Ve = {xxx ∈ P; xxx /∈ conv(P \ {xxx})}.
We prove that V = Ve = V0. 1
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1V ⊆ Ve: Let zzz ∈ V be a vertex. By definition, there exists a supporting hyperplane cccTxxx = t such
that P ∩

{
xxx ; cccTxxx = t

}
= {zzz}. Since cccTxxx < t for all xxx ∈ P \ {zzz}, it follows that xxx ∈ Ve.

Ve ⊆ V0: Let zzz ∈ Ve. Since conv(P \ {zzz}) 6= P, it follows that zzz ∈ V0.
V0 ⊆ V : Let zzz ∈ V0 and D = conv(V0 \ {zzz}). From Minkovski-Weyl’s theorem it follows that V0

is finite and therefore, D is compact. By the separation theorem, there exists a
hyperplane cccTxxx = r separating {zzz} and D, that is cccTxxx < r < cccTzzz for all xxx ∈ D. Let
t = cccTzzz. Hence, A =

{
xxx ; cccTxxx = t

}
is a supporting hyperplane of P.

We prove that A ∩ P = {zzz}. For contradiction, let zzz′ ∈ P ∩ A be a different from zzz.
Then, there exists a convex combination zzz′ = α1xxx1 + · · ·+ αkxxxk + α0zzz of V0. From
zzz 6= zzz′ it follows that α0 < 1 and αi > 0 for some i . Since α0cccTzzz = t and αicccTxxx i < t
and αjcccTxxx j ≤ t , it holds that cccTzzz′ < t which contradicts the assumption that zzz′ ∈ A.
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Faces

Theorem (A face of a face is a face)
Let F be a face of a polyhedron P and let E ⊆ F . Then, E is a face of F if and only if E
is a face of P.

Observation (Exercise)
The intersection of two faces of a polyhedron P is a face of P.

Observation (Exercise)

A non-empty set F ⊆ Rn is a face of a polyhedron P = {xxx ∈ Rn; Axxx ≤ bbb} if and only if
F is the set of all optimal solutions of a linear programming problem
min

{
cccTxxx ; Axxx ≤ bbb

}
for some vector ccc ∈ Rn.
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Outline

1 Linear programming

2 Linear, affine and convex sets

3 Convex polyhedron

4 Simplex method

5 Duality of linear programming
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7 Matching
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Notation

Notation used in the Simplex method

Linear programming problem in the equation form is a problem to find xxx ∈ Rn

which maximizes cccTxxx and satisfies Axxx = bbb and xxx ≥ 000 where A ∈ Rm×n and
bbb ∈ Rm.

We assume that rows of A are linearly independent.

For a subset B ⊆ {1, . . . , n}, let AB be the matrix consisting of columns of A
whose indices belong to B.

Similarly for vectors, xxxB denotes the coordinates of xxx whose indices belong to B.

The set N = {1, . . . , n} \ B denotes the remaining columns.

Example
Consider B = {2, 4}. Then, N = {1, 3, 5} and

A =

(
1 3 5 6 0
2 4 8 9 7

)
AB =

(
3 6
4 9

)
AN =

(
1 5 0
2 8 7

)

xxxT = (3, 4, 6, 2, 7) xxxT
B = (4, 2) xxxT

N = (3, 6, 7)

Note that Axxx = ABxxxB + ANxxxN .
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Basic feasible solutions

Definitions
Consider the equation form Axxx = bbb and xxx ≥ 000 with n variables and rank(A) = m rows.

A set of columns B is a basis if AB is a regular matrix.

The basic solution xxx corresponding to a basis B is xxxN = 000 and xxxB = A−1
B bbb.

A basic solution satisfying xxx ≥ 000 is called basic feasible solution.

xxxB are called basic variables and xxxN are called non-basic variables. 1

Lemma
A feasible solution xxx is basic if and only if the columns of the matrix AK are linearly
independent where K = {j ∈ {1, . . . , n} ; xxx j > 0}.

Observation
Basic feasible solutions are exactly vertices of the polyhedron
P = {xxx ; Axxx = bbb, xxx ≥ 000}. 2 3
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1 Remember that non-basic variables are always equal to zero.
2 If xxx is a basic feasible solution and B is the corresponding basis, then xxxN = 000 and

so K ⊆ B which implies that columns of AK are also linearly independent.
If columns of AK are linearly independent, then we can extend K into B by adding
columns of A so that columns of AB are linearly independent which implies that B
is a basis of xxx .

3 Note that basic variables can also be zero. In this case, the basis B corresponding
to a basic solution xxx may not be unique since there may be many ways to extend
K into a basis B. This is called degeneracy.
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Example: Initial simplex tableau

Canonical form

Maximize xxx1 + xxx2

−xxx1 + xxx2 ≤ 1
xxx1 ≤ 3

xxx2 ≤ 2
xxx1,xxx2 ≥ 0

Equation form

Maximize xxx1 + xxx2

−xxx1 + xxx2 + xxx3 = 1
xxx1 + xxx4 = 3

xxx2 + xxx5 = 2
xxx1,xxx2,xxx3,xxx4,xxx5 ≥ 0

Simplex tableau

xxx3 = 1 + xxx1 − xxx2

xxx4 = 3 − xxx1

xxx5 = 2 − xxx2

z = xxx1 + xxx2
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Example: Initial simplex tableau

Simplex tableau

xxx3 = 1 + xxx1 − xxx2

xxx4 = 3 − xxx1

xxx5 = 2 − xxx2

z = xxx1 + xxx2

Initial basic feasible solution
B = {3, 4, 5}, N = {1, 2}
xxx = (0, 0, 1, 3, 2)

Pivot
Two edges from the vertex (0, 0, 1, 3, 2):

1 (t , 0, 1 + t , 3− t , 2) when xxx1 is increased by t
2 (0, r , 1− r , 3, 2− r) when xxx2 is increased by r

These edges give feasible solutions for:
1 t ≤ 3 since xxx3 = 1 + t ≥ 0 and xxx4 = 3− t ≥ 0 and xxx5 = 2 ≥ 0
2 r ≤ 1 since xxx3 = 1− r ≥ 0 and xxx4 = 3 ≥ 0 and xxx5 = 2− r ≥ 0

In both cases, the objective function is increasing. We choose xxx2 as a pivot.
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Example: Pivot step

Simplex tableau

xxx3 = 1 + xxx1 − xxx2

xxx4 = 3 − xxx1

xxx5 = 2 − xxx2

z = xxx1 + xxx2

Basis
Original basis B = {3, 4, 5}
xxx2 enters the basis (by our choice).

(0, r , 1− r , 3, 2− r) is feasible for r ≤ 1 since xxx3 = 1− r ≥ 0.

Therefore, xxx3 leaves the basis.

New basis B = {2, 4, 5}

New simplex tableau

xxx2 = 1 + xxx1 − xxx3

xxx4 = 3 − xxx1

xxx5 = 1 − xxx1 + xxx3

z = 1 + 2xxx1 − xxx3
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Example: Next step

Simplex tableau

xxx2 = 1 + xxx1 − xxx3

xxx4 = 3 − xxx1

xxx5 = 1 − xxx1 + xxx3

z = 1 + 2xxx1 − xxx3

Next pivot
Basis B = {2, 4, 5} with a basic feasible solution (0, 1, 0, 3, 1).

This vertex has two incident edges but only one increases the objective function.

The edge increasing objective function is (t , 1 + t , 0, 3− t , 1− t).

Feasible solutions for xxx2 = 1 + t ≥ 0 and xxx4 = 3− t ≥ 0 and xxx5 = 1− t ≥ 0.

Therefore, xxx1 enters the basis and xxx5 leaves the basis.

New simplex tableau

xxx1 = 1 + xxx3 − xxx5

xxx2 = 2 − xxx5

xxx4 = 2 − xxx3 + xxx5

z = 3 + xxx3 − 2xxx5
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Example: Last step

Simplex tableau

xxx1 = 1 + xxx3 − xxx5

xxx2 = 2 − xxx5

xxx4 = 2 − xxx3 + xxx5

z = 3 + xxx3 − 2xxx5

Next pivot
Basis B = {1, 2, 4} with a basic feasible solution (1, 2, 0, 2, 0).

This vertex has two incident edges but only one increases the objective function.

The edge increasing objective function is (1 + t , 2, t , 2− t , 0).

Feasible solutions for xxx1 = 1 + t ≥ 0 and xxx2 = 2 ≥ 0 and xxx4 = 2− t ≥ 0.

Therefore, xxx3 enters the basis and xxx4 leaves the basis.

New simplex tableau

xxx1 = 3 − xxx4

xxx2 = 2 − xxx5

xxx3 = 2 − xxx4 + xxx5

z = 5 − xxx4 − xxx5

Jirka Fink Optimization methods 58

Example: Optimal solution

Simplex tableau

xxx1 = 3 − xxx4

xxx2 = 2 − xxx5

xxx3 = 2 − xxx4 + xxx5

z = 5 − xxx4 − xxx5

No other pivot
Basis B = {1, 2, 3} with a basic feasible solution (3, 2, 2, 0, 0).

This vertex has two incident edges but no one increases the objective function.

We have an optimal solution.

Why this is an optimal solution?

Consider an arbitrary feasible solution ỹyy .

The value of objective function is z̃ = 5− ỹyy4 − ỹyy5.

Since ỹyy4, ỹyy5 ≥ 0, the objective value is z̃ = 5− ỹyy4 − ỹyy5 ≤ 5 = z.
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Simplex tableau in general

Definition
A simplex tableau determined by a feasible basis B is a system of m + 1 linear
equations in variables xxx1, . . . ,xxxn, and z that has the same set of solutions as the
system Axxx = bbb, z = cccTxxx , and in matrix notation looks as follows:

xxxB = ppp + QxxxN

z = z0 + rrr TxxxN

where xxxB is the vector of the basic variables, xxxN is the vector on non-basic variables,
ppp ∈ Rm, rrr ∈ Rn−m, Q is an m × (n −m) matrix, and z0 ∈ R.

Observation
For each basis B there exists exactly one simplex tableau, and it is given by

Q = −A−1
B AN

ppp = A−1
B bbb 1

z0 = cccT
BA−1

B bbb

r = cccN − (cccT
BA−1

B AN)
T

2

Jirka Fink Optimization methods 60

1 Since a matrix AB is regular, we can multiply an equation ABxxxB + ANxxxN = b by
A−1

B to obtain xxxB = A−1
B bbb − A−1

B ANxxxN , so Q = −A−1
B AN and ppp = A−1

B bbb.
2 The objective function is

cccT
BxxxB + cccT

NxxxN = cccT
B(A−1

B bbb − A−1
B ANxxxN) + cccT

NxxxN = cccT
BA−1

B bbb + (cccT
N − cccT

BA−1
B AN)xxxN , so

z0 = cccT
BA−1

B bbb and r = cccN − (cccT
BA−1

B AN)
T
.
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Properties of a simplex tableau

Simplex tableau in general

xxxB = ppp + QxxxN

z = z0 + rrr TxxxN

Observation
Basis B is feasible if and only if ppp ≥ 000.

Observation

The solution corresponding to a basis B is optimal if rrr ≤ 0. 1

Observation
If a linear programming problem in the equation form is feasible and bounded, then it
has an optimal basic solution.
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1 The oposite implication may not hold for a degenerated optimal basis.

Jirka Fink Optimization methods 61

Pivot step

Simplex tableau in general

xxxB = ppp + QxxxN

z = z0 + rrr TxxxN

Find a pivot
If rrr ≤ 000, then we have an optimal solution.

Otherwise, choose an arbitrary entering variable xxxv such that rrr v > 0.

If Q?,v ≥ 000, then the corresponding edge is unbounded and the problem is also
unbounded. 1

Otherwise, find a leaving variable xxxu which limits the increment of the entering
variable most strictly, i.e. Qu,v < 0 and − pppu

Qu,v
is minimal.

Update the simplex tableau
Gaussian elimination: Express xxxv from the row xxxu = pppu + Qu,?xxxN and substitute xxxv

using the obtained formula.
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1 Consider the following edge: xxxv = t , remaining nonbasic variables are 0, and
xxxB = p + Q?,v t . All solutions on this edge are feasible for t ≥ 0 since xxx ≥ 000. For
the objective value, cccTxxx = z0 + rrr TxxxN = z0 + rrr v t →∞ as t →∞, so the objective
function is unbounded.
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Pivot rules

Pivot rules
Largest coefficient Choose an improving variable with the largest coefficient.

Largest increase Choose an improving variable that leads to the largest absolute
improvement in z.

Steepest edge Choose an improving variable whose entering into the basis moves the
current basic feasible solution in a direction closest to the direction of
the vector c, i.e.

cccT(xxxnew − xxxold )

||xxxnew − xxxold ||

Bland’s rule Choose an improving variable with the smallest index, and if there are
several possibilities of the leaving variable, also take the one with the
smallest index.

Random edge Select the entering variable uniformly at random among all improving
variables.
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Initial feasible basis

Equation form

Maximize cccTxxx such that Axxx = bbb and xxx ≥ 000.

Auxiliary linear program

Multiply every row j with bbbj < 0 by −1. 1

Introduce new variables yyy ∈ Rm and solve an auxiliary linear program:
Maximize −111Tyyy such that Axxx + Iyyy = bbb and xxx ≥ 000, yyy ≥ 000.

An initial basis contains variables yyy and an initial tableau is

yyy = bbb + Axxx
z = −111Tbbb + (111TA)xxx

Whenever a variable of yyy become nonbasic, it can be removed from a tableau.

When all variables of yyy are removed, express the original objective function cccTxxx
using nonbasic variables and solve the problem.

Observation
The original linear program has a feasible solution if and only if an optimal solution of
the auxiliary linear program satisfies yyy = 000.
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1 Now, assume that bbb ≥ 0.
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Complexity

Degeneracy

Different bases may correspond to the same solution. 1

The simplex method may loop forever between these bases.

Bland’s or lexicographic rules prevent visiting the same basis twice.

The number of visited vertices
The total number of vertices is finite since the number of bases is finite.

The objective value of visited vertices is increasing, so every vertex is visited at
most once. 2

The number of visited vertices may be exponential, e.g. the Klee-Minty cube. 3

Practical linear programming problems in equation forms with m equations
typically need between 2m and 3m pivot steps to solve.

Open problem
Is there a pivot rule which guarantees a polynomial number of steps?
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1 For example, the apex of the 3-dimensional k -side pyramid belongs to k faces, so
there are

(k
3

)
bases determining the apex.

2 In degeneracy, the simplex method stay in the same vertex; and when the vertex is
left, it is not visited again.

3 The Klee-Minty cube is a “deformed” n-dimensional cube with 2n facets and 2n

vertices. The Dantzig’s original pivot rule (largest coefficient) visits all vertices of
this cube.
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Duality of linear programming: Example

Find an upper bound for the following problem

Maximize 2xxx1 + 3xxx2

subject to 4xxx1 + 8xxx2 ≤ 12
2xxx1 + xxx2 ≤ 3
3xxx1 + 2xxx2 ≤ 4

xxx1,xxx2 ≥ 0

Simple estimates

2xxx1 + 3xxx2 ≤ 4xxx1 + 8xxx2 ≤ 12 1

2xxx1 + 3xxx2 ≤ 1
2 (4xxx1 + 8xxx2) ≤ 6 2

2xxx1 + 3xxx2 = 1
3 (4xxx1 + 8xxx2 + 2xxx1 + xxx2) ≤ 5 3

What is the best combination of conditions?
Every non-negative linear combination of inequalities which gives an inequality
ddd1xxx1 + ddd2xxx2 ≤ h with d1 ≥ 2 and d2 ≥ 3 provides the upper bound
2xxx1 + 3xxx2 ≤ ddd1xxx1 + ddd2xxx2 ≤ h.
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1 The first condition
2 A half of the first condition
3 A third of the sum of the first and the second conditions
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Duality of linear programming: Example

Consider a non-negative combination yyy of inequalities

Maximize 2xxx1 + 3xxx2

subject to 4xxx1 + 8xxx2 ≤ 12 / · yyy1
2xxx1 + xxx2 ≤ 3 / · yyy2
3xxx1 + 2xxx2 ≤ 4 / · yyy3

xxx1,xxx2 ≥ 0

Observations
Every feasible solution xxx and non-negative combination yyy satisfies
(4yyy1 + 2yyy2 + 3yyy3)xxx1 + (8yyy1 + yyy2 + 2yyy3)xxx2 ≤ 12yyy1 + 3yyy2 + 4yyy3.

If 4yyy1 + 2yyy2 + 3yyy3 ≥ 2 and 8yyy1 + yyy2 + 2yyy3 ≥ 3,
then 12yyy1 + 2yyy2 + 4yyy3 is an upper for the objective function.

Dual program 1

Minimize 12yyy1 + 2yyy2 + 4yyy3
subject to 4yyy1 + 2yyy2 + 3yyy3 ≥ 2

8yyy1 + yyy2 + 2yyy3 ≥ 3
yyy1,yyy2,yyy3 ≥ 0
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1 The primal optimal solution is xxxT = ( 1
2 ,

5
4 ) and the dual solution is yyyT = ( 5

16 , 0,
1
4 ),

both with the same objective value 4.75.
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Duality of linear programming: General

Primal linear program

Maximize cccTxxx subject to Axxx ≤ bbb and xxx ≥ 000

Dual linear program

Minimize bbbTyyy subject to ATyyy ≥ ccc and yyy ≥ 000

Weak duality theorem

For every primal feasible solution xxx and dual feasible solution yyy hold cccTxxx ≤ bbbTyyy .

Corollary
If one program is unbounded, then the other one is infeasible.

Duality theorem
Exactly one of the following possibilities occurs

1 Neither primal nor dual has a feasible solution
2 Primal is unbounded and dual is infeasible
3 Primal is infeasible and dual is unbounded
4 There are feasible solutions xxx and yyy such that cccTxxx = bbbTyyy
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Dualization

Every linear programming problem has its dual, e.g.

Maximize cccTxxx subject to Axxx ≥ bbb and xxx ≥ 000 — Primal program

Maximize cccTxxx subject to −Axxx ≤ −bbb and xxx ≥ 000 — Equivalent formulation

Minimize −bbbTyyy subject to −ATyyy ≥ ccc and yyy ≥ 000 — Dual program

Minimize bbbTyyy subject to ATyyy ≥ ccc and yyy ≤ 000 — Simplified formulation

A dual of a dual problem is the (original) primal problem

Minimize bbbTyyy subject to ATyyy ≥ ccc and yyy ≥ 000 — Dual program

-Maximize −bbbTyyy subject to ATyyy ≥ ccc and yyy ≥ 000 — Equivalent formulation

-Minimize cccTxxx subject to Axxx ≥ −bbb and xxx ≤ 000 — Dual of the dual program

-Minimize −cccTxxx subject to −Axxx ≥ −bbb and xxx ≥ 000 — Simplified formulation

Maximize cccTxxx subject to Axxx ≤ bbb and xxx ≥ 000 — The original primal program
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Dualization: General rules

Maximizing program Minimizing program

Variables xxx1, . . . ,xxxn yyy1, . . . ,yyym

Matrix A AT

Right-hand side bbb ccc

Objective function maxcccTxxx minbbbTyyy

Constraints i-th constraint has ≤ yyy i ≥ 0
i-th constraint has ≥ yyy i ≤ 0
i-th constraint has = yyy i ∈ R

xxx j ≥ 0 j-th constraint has ≥
xxx j ≤ 0 j-th constraint has ≤
xxx j ∈ R j-th constraint has =
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Linear programming: Feasibility versus optimality

Feasibility versus optimality
Finding a feasible solution of a linear program is computationally as difficult as finding
an optimal solution.

Using duality
The optimal solutions of linear programs

Primal: Maximize cccTxxx subject to Axxx ≤ bbb and xxx ≥ 000

Dual: Minimize bbbTyyy subject to ATyyy ≥ ccc and yyy ≥ 000

are exactly feasible solutions satisfying

Axxx ≤ bbb
ATyyy ≥ ccc
cccTxxx ≥ bbbTyyy
xxx ,yyy ≥ 000
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Complementary slackness

Theorem
Feasible solutions xxx and yyy of linear programs

Primal: Maximize cccTxxx subject to Axxx ≤ bbb and xxx ≥ 000

Dual: Minimize bbbTyyy subject to ATyyy ≥ ccc and yyy ≥ 000

are optimal if and only if

xxx i = 0 or AT
i,?yyy = ccc i for every i = 1, . . . , n and

yyy j = 0 or Aj,?xxx = bbbj for every j = 1, . . . ,m.

Proof

cccTxxx =
n∑

i=1

ccc ixxx i ≤
n∑

i=1

(yyyTA?,i )xxx i = yyyTAxxx =
m∑

j=1

yyy j (Aj,?xxx) ≤
m∑

j=1

yyy jbbbj = bbbTyyy
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Fourier–Motzkin elimination: Example

Goal: Find a feasible solution

2x − 5y + 4z ≤ 10
3x − 6y + 3z ≤ 9
5x + 10y − z ≤ 15
−x + 5y − 2z ≤ −7
−3x + 2y + 6z ≤ 12

Express the variable x in each condition

x ≤ 5 + 5
2 y − 2z

x ≤ 3 + 2y − z
x ≤ 3 − 2y + 1

5 z
x ≥ 7 + 5y − 2z
x ≥ −4 + 2

3 y + 2z

Eliminate the variable x
The original system has a feasible solution if and only if there exist y and z satisfying

max
{

7 + 5y − 2z,−4 +
2
3

y + 2z
}
≤ min

{
5 +

5
2

y − 2z, 3 + 2y − z, 3− 2y +
1
5

z
}
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Fourier–Motzkin elimination: Example

Rewrite into a system of inequalities
Real numbers y and z satisfy
max

{
7 + 5y − 2z,−4 + 2

3 y + 2z
}
≤ min

{
5 + 5

2 y − 2z, 3 + 2y − z, 3− 2y + 1
5 z
}

if
and only they satisfy

7 + 5y − 2z ≤ 5 + 5
2 y − 2z

7 + 5y − 2z ≤ 3 + 2y − z
7 + 5y − 2z ≤ 3 − 2y + 1

5 z
−4 + 2

3 y + 2z ≤ 5 + 5
2 y − 2z

−4 + 2
3 y + 2z ≤ 3 + 2y − z

−4 + 2
3 y + 2z ≤ 3 − 2y + 1

5 z

Overview
Eliminate the variable y , find a feasible evaluation of z a and compute y a x .

In every step, we eliminate one variable; however, the number of conditions may
increase quadratically.

If we start with m conditions, then after n eliminations the number of conditions is
up to 4(m/4)2n

.

Jirka Fink Optimization methods 75

Fourier–Motzkin elimination: In general

Observation
Let Axxx ≤ bbb be a system with n ≥ 1 variables and m inequalities. There is a system
A′xxx ′ ≤ bbb′ with n − 1 variables and at most max

{
m,m2/4

}
inequalities, with the

following properties:
1 Axxx ≤ bbb has a solution if and only if A′xxx ′ ≤ bbb′ has a solution, and
2 each inequality of A′xxx ′ ≤ bbb′ is a positive linear combination of some inequalities

from Axxx ≤ bbb.

Proof
1 WLOG: Ai,1 ∈ {−1, 0, 1} for all i = 1, . . . ,m
2 Let C = {i ; Ai,1 = 1}, F = {i ; Ai,1 = −1} and L = {i ; Ai,1 = 0}
3 Let A′xxx ′ ≤ bbb′ be the system of n − 1 variables and |C| · |F |+ |L| inequalities

j ∈ C, k ∈ F : (Aj,? + Ak,?)xxx ≤ bbbj + bbbk (1)
l ∈ L : Al,?xxx ≤ bbbl (2)

4 Assuming A′xxx ′ ≤ bbb′ has a solution xxx ′, we find a solution xxx of Axxx ≤ bbb:
(1) is equivalent to A′k,?xxx

′ − bbbk ≤ bbbj − A′j,?xxx
′ for all j ∈ C, k ∈ F ,

which is equivalent to maxk∈F

{
A′k,?xxx

′ − bbbk

}
≤ minj∈C

{
bbbj − A′j,?xxx

′
}

Choose xxx1 between these bounds and xxx = (xxx1,xxx ′) satisfies Axxx ≤ bbb
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Farkas lemma

Definition
A cone generated by vectors aaa1, . . . ,aaan ∈ Rm is the set of all non-negative
combinations of aaa1, . . . ,aaan, i.e.

{∑n
i=1 αiaaai ; α1, . . . , αn ≥ 0

}
.

Proposition (Farkas lemma geometrically)

Let aaa1, . . . ,aaan,bbb ∈ Rm. Then exactly one of the following two possibilities occurs:
1 The point bbb lies in the cone generated by aaa1, . . . ,aaan.
2 There exists a hyperplane h =

{
xxx ∈ Rm; yyyTxxx = 0

}
containing 000 for some yyy ∈ Rm

separating aaa1, . . . ,aaan and bbb, i.e. yyyTaaai ≥ 0 for all i = 1, . . . , n and yyyTbbb < 0.

Proposition (Farkas lemma)

Let A ∈ Rm×n and bbb ∈ Rm. Then exactly one of the following two possibilities occurs:
1 There exists a vector xxx ∈ Rn satisfying Axxx = bbb and xxx ≥ 000.
2 There exists a vector yyy ∈ Rm satisfying yyyTA ≥ 000 and yyyTb < 000.
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Farkas lemma

Proposition (Farkas lemma)

Let A ∈ Rm×n and bbb ∈ Rm. The following statements hold.
1 The system Axxx = bbb has a non-negative solution xxx ∈ Rn if and only if every yyy ∈ Rm

with yyyTA ≥ 000T satisfies yyyTbbb ≥ 0.
2 The system Axxx ≤ bbb has a non-negative solution xxx ∈ Rn if and only if every

non-negative yyy ∈ Rm with yyyTA ≥ 000T satisfies yyyTbbb ≥ 0.
3 The system Axxx ≤ bbb has a solution xxx ∈ Rn if and only if every non-negative yyy ∈ Rm

with yyyTA = 000T satisfies yyyTbbb ≥ 0.

Overview of the proof of duality
Fourier–Motzkin elimination

⇓
Farkas lemma, 3rd version

⇓
Farkas lemma, 2nd version

⇓
Duality of linear programming

Observation (Exercise)
Variants of Farkas lemma are equivalent.
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Farkas lemma

Proposition (Farkas lemma, 3rd version)

Let A ∈ Rm×n and bbb ∈ Rm. Then, the system Axxx ≤ bbb has a solution xxx ∈ Rn if and only if
every non-negative yyy ∈ Rm with yyyTA = 000T satisfies yyyTbbb ≥ 0.

Proof (overview)

⇒ If xxx satisfies Axxx ≤ bbb and yyy ≥ 000 satisfies yyyTA = 000T, then yyyTbbb ≥ yyyTAxxx ≥ 000Txxx = 000

⇐ If Axxx ≤ bbb has no solution, the find yyy ≥ 000 satisfying yyyTA = 000T and yyyTbbb < 0 by the
induction on n

n = 0 The system Axxx ≤ bbb equals to 000 ≤ bbb which is infeasible, so bi < 0 for some i
Choose yyy = ei (the i-th unit vector)

n > 0 Using Fourier–Motzkin elimination we obtain an infeasible system A′xxx ′ ≤ bbb′

There exists a non-negative matrix M such that (000|A′) = MA and bbb′ = Mbbb
By induction, there exists yyy ′ ≥ 0, yyy ′TA′ = 000T, yyy ′Tbbb′ < 0
We verify that yyy = MTyyy ′ satisfies all requirements of the induction
yyy = MTyyy ′ ≥ 000
yyyTA = (MTyyy ′)TA = yyy ′TMA = yyy ′T(000|A′) = 000T

yyyTbbb = (MTyyy ′)Tbbb = yyy ′TMbbb = yyy ′Tbbb′ < 000T
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Proof of the duality of linear programming

Proposition (Farkas lemma, 2nd version)

Let A ∈ Rm×n and bbb ∈ Rm. The system Axxx ≤ bbb has a non-negative solution if and only
if every non-negative yyy ∈ Rm with yyyTA ≥ 000T satisfies yyyTbbb ≥ 0.

Duality

Primal: Maximize cccTxxx subject to Axxx ≤ bbb and xxx ≥ 000

Dual: Minimize bbbTyyy subject to ATyyy ≥ ccc and yyy ≥ 000

If the primal problem has an optimal solution xxx?, then the dual problem has an optimal
solution yyy? and cccTxxx? = bbbTyyy?.

Proof of duality using Farkas lemma
1 Let xxx? be an optimal solution of the primal problem and γ = cccTxxx?

2 ε > 0 iff Axxx ≤ bbb and xxx ≥ 000 and cccTxxx ≥ γ + ε is infeasible
3 ε > 0 iff

( A
−cccT

)
xxx ≤

( bbb
−γ−ε

)
and xxx ≥ 000 is infeasible

4 ε > 0 iff uuu, z ≥ 0 and
(uuu

z

)T( A
−cccT

)
≥ 000T and

(uuu
z

)T( bbb
−γ−ε

)
< 0 is feasible

5 ε > 0 iff uuu, z ≥ 0 and ATuuu ≥ zccc and bbbTuuu < z(γ + ε) is feasible
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Proof of the duality of linear programming

Duality

Primal: Maximize cccTxxx subject to Axxx ≤ bbb and xxx ≥ 000

Dual: Minimize bbbTyyy subject to ATyyy ≥ ccc and yyy ≥ 000

If the primal problem has an optimal solution xxx?, then the dual problem has an optimal
solution yyy? and cccTxxx? = bbbTyyy?.

Proof of duality using Farkas lemma (continue)
1 Let xxx? be an optimal solution of the primal problem and γ = cccTxxx?

2 ε > 0 iff uuu, z ≥ 0 and ATuuu ≥ zccc and bbbTuuu < z(γ + ε) is feasible
3 For ε > 0, there exists uuu′, z′ ≥ 0 with ATuuu′ ≥ z′ccc and bbbTuuu′ < z′(γ + ε)

4 For ε = 0 it holds that uuu′, z′ ≥ 0 and ATuuu′ ≥ z′ccc so bbbTuuu′ ≥ z′γ
5 Since z′γ ≤ bbbTuuu′ < z′(γ + ε) and z′ ≥ 0 it follows that z′ > 0
6 Let vvv = 1

z′ uuu
′

7 Since ATvvv ≥ ccc and vvv ≥ 000, the dual solution vvv is feasible
8 Since the dual is feasible and bounded, there exists an optimal dual solution yyy?

9 Hence, bbbTyyy? < γ + ε for every ε > 0, and so bbbTyyy? ≤ γ
10 From the weak duality theorem it follows that bbbTyyy? = cccTxxx?
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Ellipsoid method: Preliminaries

Problem
Determine whether a given fully-dimensional convex compact set Z ⊆ Rn (e.g. a
polytope) is non-empty and find a point in Z if exists.

Separation oracle
Separation oracle determines whether a point s belongs into Z . If s /∈ Z , the oracle
finds a hyperplane that separates s and Z .

Inputs
Radius R > 0 of a ball B(0,R) containing Z

Radius ε > 0 such that Z contains B(s, ε) for some point s if Z is non-empty

Separation oracle
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Ellipsoid method

Idea
Consider an ellipsoid E containing Z . In every step, reduce the volume of E using an
hyperplane provided by the oracle.

Algorithm

1 Init: s = 000, E = B(s,R)
2 Loop
3 if volume of E is smaller than volume of B(0, ε) then
4 return Z is empty

5 Call the oracle
6 if s ∈ Z then
7 return s is a point of Z

8 Update s and Z using the separation hyperplane fount by oracle
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Ellipsoid

Definition: Ball
The ball in the centre sss ∈ Rn and radius R ≥ 0 is B(sss,R) = {xxx ∈ Rn; ||xxx − sss|| ≤ R}.

Definition
Ellipsoid E is an affine transformation of the unit ball B(000, 1). That is,
E = {Mxxx + sss; xxx ∈ B(000, 1)} where M is a regular matrix and s is the centre of E .

Notation

E =
{

yyy ∈ Rn; M−1(yyy − sss) ∈ B(000, 1)
}

=
{

yyy ∈ Rn; (yyy − sss)T(M−1)
T
M−1(yyy − sss) ≤ 1

}
=

{
yyy ∈ Rn; (yyy − sss)TQ−1(yyy − sss) ≤ 1

}
where Q = MMT is a positive definite matrix
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Ellipsoid method: update of the ellipsoid

Separation hyperplane

Consider a hyperplane aaaTxxx = b such that aaaTsss ≥ b and Z ⊆
{
xxx ; aaaTxxx ≤ b

}
.

For simplicity, assume that the hyperplane contains sss, that is aaaTsss = b.

Update formulas (without proof)

sss′ = sss − 1
n + 1

Qaaa√
aaaTQaaa

Q′ =
n2

n2 − 1

(
Q − 2

n + 1
QaaaaaaTQ
aaaTQaaa

)

Reduce of the volume (without proof)

volume(E ′)
volume(E)

≤ e−
1

2n+2

Corollary

The number of steps of the Ellipsoid method is at most
⌈
n(2n + 2) ln R

ε

⌉
.
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Ellipsoid method: Estimation of radii for rational polytopes

Largest coefficient of A and bbb
Let L be the maximal absolute value of all coefficients of A and b.

Estimation of R
We find R′ such that ||xxx ||∞ ≤ R′ for all xxx satisfying Axxx ≤ bbb:

Consider a vertex of the polytope satisfying a subsystem A′xxx = bbb′

Cramer’s rule: xxx i =
det A′

i
det A′

| det(A′i )| ≤ n!Ln using the definition of determinant

| det(A′)| ≥ 1 since A′ is integral and regular

From the choice R′ = n!Ln, it follows that log(R) = O(n2 log(n) log(L))

Estimation of ε (without proof)
A non-empty rational fully-dimensional polytope contains a ball with radius ε where
log 1

ε
= O(poly(n,m, log L)).

Complexity of Ellipsoid method
Time complexity of Ellipsoid method is polynomial in the length of binary encoding of A
and bbb.
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Strongly polynomial algorithm for linear programming

Ellipsoid method is not strongly polynomial (without proof)
For every M there exists a linear program with 2 variables and 2 constrains such that
the ellipsoid method executes at least M mathematical operations.

Open problem
Decide whether there exist an algorithm for linear programming which is polynomial in
the number of variables and constrains.
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Matching problems

Perfect matching problem
Input: Graph (V ,E)

Output: Perfect matching M ⊆ E if it exists

Minimum weight perfect matching problem

Input: Graph (V ,E) and weights ccce ≥ 0 on edges e ∈ E 1

Output: Perfect matching M ⊆ E minimizing the weight
∑

e∈M ccce

Overview
1 Tools: Augmenting paths, Tutte-Berge formula, alternating trees
2 Perfect matching in bipartite graphs without weights
3 Minimum weight perfect matching in bipartite graphs
4 Tool: Shrinking odd circuits
5 Perfect matching in general graphs without weights
6 Minimum weight perfect matching in general graphs
7 Maximum weight matching
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1 In the perfect matching problem, we can add a constant to weights of all edges
without changing the set of all optimal perfect matchings. Therefore, if some edge
has a negative weight, we can add a sufficiently large constant to all weights to
ensure non-negativity of ccc.
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Augmenting paths

Definitions
Let M ⊆ E a matching of a graph G = (V ,E).

A vertex v ∈ V is M-covered if some edge of M is incident with v .

A vertex v ∈ V is M-exposed if v is not M-coveder.

A path P is M-alternating if its edges are alternately in and not in M.

An M-alternating path is M-augmenting if both end-vertices are M-exposed.

Augmenting path theorem of matchings
A matching M in a graph G = (V ,E) is maximum if and only if there is no
M-augmenting path.

Proof
⇒ Every M-augmenting path increases the size of M
⇐ Let N be a matching such that |N| > |M| and we find an M-augmenting path

1 The graph (V ,N ∪M) contains a component K which has more N edges than M edges
2 K has at least two vertices u and v which are N-covered and M-exposed
3 Verteces u and v are joined by a path P in K
4 Observe that P is M-augmenting
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Tutte-Berge Formula

Definitions
Let def(G) be the number of exposed vertices by a maximum size matching in G.

Let oc(G) be the number of odd components of a graph G. 1

Observations
def(G) ≥ oc(G)

For every A ⊆ V it holds that def(G) ≥ oc(G \ A)− |A|. 2

Tutte’s matching theorem

A graph G has a perfect matching if and only if oc(G \ A) ≤ |A| for every A ⊆ V . 3

Theorem: Tutte-Berge Formula (without proof)
def(G) = max {oc(G \ A)− |A|; A ⊆ V}
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1 A component of a graph is odd if it has odd number of vertices.
2 Every odd component has at least one exposed vertex.
3 ⇒ If a graph G has a perfect matching, then def(G) = 0, so from the

previous observation it follows that oc(G \ A) ≤ |A|.
⇐ We will present an algorithmic proof which finds a perfect matching

or a subset A ⊆ V such that oc(G \ A) > |A|.
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Building an alternating tree

Initialization of M-alternating tree T on vertices A∪̇B

T = A = ∅ and B = {r} where r is an M-exposed root. 1

Use uv ∈ E to extend T
Input: An edge uv ∈ E such that u ∈ B and v /∈ A ∪ B and v is M-covered.

Action: Let vz ∈ M and extend T by edges {uv , vz} and A by v and B by z.

Properties
r is the only M-exposed vertex of T .

For every v of T , the path in T from v to r is M-alternating.

|B| = |A|+ 1

Use uv ∈ E to augment M

Input: An edge uv ∈ E such that u ∈ B and v /∈ A ∪ B and v is M-exposed.

Action: Let P be the path obtained by attaching uv to the path from r to u in T .
Replace M by M4E(P).
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1 An M-alternating tree T with the root r on vertices A and B is a tree obtained from
this initialization by applying the following operation extend.
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Frustrated tree

Definition
M-alternating tree T is M-frustrated if every edge of G having one end vertex in B has
the other end vertex in A. 1

Observation
If a bipartite graph G has a matching M and an frustrated M-alternating tree, then G
has no perfect matching. 2 3
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1 That is, an M-alternating tree is frustrated if neither operation extend nor augment
can be applied. Note that in bipartite graphs, there is no edge between vertices of
B.

2 B are single vertex components in the graph G \ A. Therefore,
oc(G \ A) ≥ |B| > |A|.

3 This proves that Tutte’s matching theorem for bipartite graphs: From every
M-exposed vertex r we build an M-alternating tree T such that T can be used to
augment M to cover r or T is frustrated.
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Algorithm for perfect matching problem in a bipartite graph

Algorithm

1 Init: M := ∅
2 while G contains an M-exposed vertex r 1 do
3 A := ∅ and B = {r} # Build an M-alternating tree from r.
4 while there exists uv ∈ E with u ∈ B and v /∈ A ∪ B do
5 if v is M-covered then
6 Use uv to extend T
7 else
8 Use uv to augment M
9 break # Terminate the inner loop.

10 if r is still M-exposed 2 then
11 return There is no perfect matching # T is a frustrated tree.

12 return Perfect matching M

Theorem
The algorithm decides whether a given bipartite graph G has a perfect matching and
find one if exists. The algorithm calls O(n) augmenting operations and O(n2) extending
operations.
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1 Actually, it suffices to once iterate over all vertices.
2 That is, the augmentation was no applied.
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Duality and complementary slackness of perfect matchings

Primal: relaxed perfect matching

Minimize cccTxxx subject to Axxx = 111 and xxx ≥ 000 where A is the incidence matrix.

Dual

Maximize 111Tyyy subject to ATyyy ≤ ccc and yyy ∈ RE , that is yyyu + yyy v ≤ cccuv .

Idea of primal-dual algorithms
If we find a primal and a dual feasible solutions satisfying the complementary
slackness, then solutions are optimal (relaxed) solutions.

Definition
An edge uv ∈ E is called tight if yyyu + yyy v = cccuv .

Let Eyyy be the set of a tight edges of the dual solution yyy .

Let Mxxx = {uv ∈ E ; xxxuv = 1} be the set of matching edge of the primal solution xxx .

Complementary slackness
xxxuv = 0 or yyyu + yyy v = cccuv for every edge uv ∈ E , that is Mxxx ⊆ Eyyy .
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Weighted perfect matchings in a bipartite graph: Overview

Complementary slackness
xxxuv = 0 or yyyu + yyy v = cccuv for every edge uv ∈ E , that is Mxxx ⊆ Eyyy .

Invariants

xxx ∈ {0, 1}E and Mxxx = {uv ∈ E ; xxxuv = 1} forms a matching.

Dual solution is feasible, that is yyyu + yyy v ≤ cccuv .

Every matching edge is tight, that is Mxxx ⊆ Eyyy .

Initial solution satisfying invariants
xxx = 000 and yyy = 000

Lemma: optimality
If Mxxx is a perfect matching, then Mxxx is a perfect matching with the minimum weight.

Idea of the algorithm

If there exists an Mxxx -augmenting path P in (V ,Eyyy ), then use P to augment Mxxx .

Otherwise, use a frustrated Mxxx -alternating tree in (V ,Eyyy ) to update the dual
solution yyy and enlarge Eyyy .
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Algorithm for minimum weight perfect matchings in a bipartite graph

Algorithm

1 Init: M := ∅ and yyy = 000
2 while G contains an M-exposed vertex r do
3 A := ∅ and B = {r} # Build an M-alternating tree from r.
4 while r is M-exposed do
5 if there exists uv ∈ Eyyy with u ∈ B and v /∈ A ∪ B then
6 if v is M-covered then
7 Use uv to extend T 1

8 else
9 Use uv to augment M 2

10 else if there exists uv ∈ E with u ∈ B and v /∈ A ∪ B then
11 ε = min {cuv − yyyu − yyy v ; u, v ∈ E , u ∈ B, v /∈ A ∪ B}
12 yyyu := yyyu + ε for all u ∈ B
13 yyy v := yyy v − ε for all v ∈ A 3 4

14 else
15 return There is no perfect matching in G. 5

16 return Minimum weight perfect matching M
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1 Note that T uses only tight edges.
2 Invariants are satisfied since M is augmented by edges of T which are tight.
3 Observe that yyy remains a dual feasible solution. Furthermore, no edge is removed

from the tight set Eyyy and at least one edge become tight. Therefore, all invariants
remain satisfied.

4 In the next iteration, an edge uv minimizing ε is used to extend T or augment M.
5 T is a frustrated M-alternating tree in G. Also note that the dual problem is

unbounded since ε is unbounded in this case.
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Algorithm for minimum weight perfect matchings in a bipartite graph

Theorem
The algorithm decides whether a given bipartite graph G has a perfect matching and a
minimal-weight perfect matching if exists. The algorithm calls O(n) augmenting
operations and O(n2) extending operations and O(n2) dual changes.
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Shrinking odd circuits

Definition
Let C be an odd circuit in G. The graph G × C has vertices (V (G) \ V (C)) ∪ {c′}
where c′ is a new vertex and edges 1

E(G) with both end-vertices in V (G) \ V (C) and

and uc′ for every edge uv with u /∈ V (C) and v ∈ V (C).

Edges E(C) are removed.

Proposition

Let C be an odd circuit of G and M ′ be a matching G × C. Then, there exists a
matching M of G such that M ⊆ M ′ ∪ E(C) and the number of M ′-exposed nodes of G
is the same as the number of M ′-exposed nodes in G × C.

Corollary
def(G) ≤ def(G × C)

Remark
There exists a graph G with odd circuit C such that def(G) < def(G × C).

Jirka Fink Optimization methods 100

1 Formally, E(G × C) = {uv ; uv ∈ E(G), u, v ∈ V (G) \ V (C)} ∪
{uc′; ∃v ∈ V (C) : uv ∈ E(G), u ∈ V (G) \ V (C)}.
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Perfect matching in general graphs

Use uv to shrink and update M ′ and T

Input: A matching M ′ of a graph G′, an M ′-alternating tree T , edge uv ∈ E ′

such that u, v ∈ B

Action: Let C be the circuit formed by uv together with the path in T from u to v .
Replace

G′ by G′ × C
M ′ by M ′ \ E(C)
T by the tree having edge-set E(T ) \ E(C).

Observation
Let G′ be a graph obtained from G by a sequence of odd-circuit shrinkings. Let M ′ be
matching of G′ and let T be an M ′ alternating tree of G′ such that all vertices of A are
original vertices of G. If T is frustrated, then G has no perfect matching.

Proof is based on Tutte’s matching theorem
A graph G has a perfect matching if and only if oc(G \ A) ≤ |A| for every A ⊆ V .
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Perfect matchings algorithm in a non-weighted graph

Algorithm

1 Init: M := ∅
2 while G contains an M-exposed vertex r do
3 M ′ = M, G′ = G and T = ({r} , ∅)
4 while there exists uv ∈ E(G′) with u ∈ B and v /∈ A do
5 if v ∈ B then
6 Use uv to shrink and update M ′ and T
7 else if v is M ′-covered then
8 Use uv to extend T
9 else

10 Use uv to augment M ′

11 Extend M ′ to a matching M of G
12 break # Terminate the inner loop.

13 if r is still M-exposed then
14 return There is no perfect matching

15 return Perfect matching M

Jirka Fink Optimization methods 102

Perfect matchings algorithm in a non-weighted graph II

Algorithm

1 Init: M ′ := ∅, G′ = G
2 while G′ contains an M ′-exposed vertex r do
3 T = ({r} , ∅)
4 while r is M ′-exposed do
5 if there exists uv ∈ E(G′) with u ∈ B and v /∈ A then
6 if v ∈ B then
7 Use uv to shrink and update M ′ and T
8 else if v is M ′-covered then
9 Use uv to extend T

10 else
11 Use uv to augment M ′

12 else if there exists a pseudonode u in A then
13 Expand u into a circuit and update T , M ′ and G′

14 else
15 return There is no perfect matching

16 Expand all pseudonodes and obtain M from M ′

17 return Perfect matching M
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Minimum-Weight perfect matchings in general graphs

Observation
Let M be a perfect matching of G and D be an odd set of vertices of G. Then there
exists at least one edge uv ∈ M between D and V \ D.

Linear programming for Minimum-Weight perfect matchings in general graphs

Minimize cccxxx
subject to δuxxx = 1 for all u ∈ V

δDxxx ≥ 1 for all D ∈ C
xxx ≥ 000

Where δD ∈ {0, 1}E is a vector such that δD
uv = 1 if |uv ∩ D| = 1 and δw = δ{w} and C is

the set of all odd-size subsets of V .

Theorem

Let G be a graph and ccc ∈ RE . Then G has a perfect matching if and only if the LP
problem is feasible. Moreover, if G has a perfect matching, the minimum weight of a
perfect matching is equal to the optimal value of the LP problem.
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Minimum-Weight perfect matchings in general graphs: Duality

Primal

Minimize cccxxx
subject to δuxxx = 1 for all u ∈ V

δDxxx ≥ 1 for all D ∈ C
xxx ≥ 000

Dual

Maximize
∑

v∈V yyy v +
∑

D∈C zzzD

subject to yyyu + yyy v +
∑

uv∈D∈C zzzD ≤ cccuv for all uv ∈ E
zzz ≥ 000

Notation: Reduced cost
c̄ccuv := cccuv − yyyu − yyyv −

∑
uv∈D∈C zzzD

An edge e is tight if c̄cce = 0 and let Ey be the set of tight edges.

Complementary slackness
xxxe > 0 implies e is tight for all e ∈ E

zzzD > 0 implies δDxxx = 1 for all D ∈ C
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Minimum-Weight perfect matchings in general graphs: Change of y

Updates weights and dual solution when shrinking a circuit C

Replace ccc′uv by ccc′uv − yyy ′v for u ∈ C and v /∈ C and set yyy ′c′ = 0 for the new vertex c′.
Note that the reduced cost is unchanged.

Expand c′ into circuit C

Set zzz′C = yyy ′c′
Replace ccc′uv by ccc′uv + yyy ′v for u ∈ C and v /∈ C

Update M ′ and T

Change of yyy and zzz on a frustrated tree

Input: A graph G′ with weights ccc′, a feasible dual solution yyy ′, a matching M ′ of
tight edges of G′ and an M ′-alternating tree T of tight edges of G′.

Action: ε1 = min
{
c̄cce
′; e joins a vertex in B and a vertex not in T

}
ε2 = min

{
c̄cce
′/2; e joins two vertices of B

}
ε3 = min {yyy ′v ; v ∈ A and v is a pseudonode of G}
ε = min {ε1, ε2, ε3}
Replace yyy ′v by yyy ′v + ε for all v ∈ B
Replace yyy ′v by yyy ′v − ε for all v ∈ A
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Minimal weight perfect matchings algorithm in a general graph

1 Init: M ′ := ∅, G′ = G
2 while G′ contains an M ′-exposed vertex r do
3 T = ({r} , ∅)
4 while r is M ′-exposed do
5 if there exists uv ∈ E=(G′) with u ∈ B and v /∈ A then
6 if v ∈ B then
7 Use uv to shrink and update M ′ and T
8 else if v is M ′-covered then
9 Use uv to extend T

10 else
11 Use uv to augment M ′

12 else if there exists a pseudonode u in A with y ′u = 0 then
13 Expand u into a circuit and update T , M ′ and G′

14 else
15 Determine ε and change yyy
16 if ε =∞ then
17 return There is no perfect matching

18 Expand all pseudonodes and obtain M from M ′

19 return Perfect matching M
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Maximum-weight (general) matching

Reduction to perfect matching problem

Let G be a graph with weights ccc ∈ RE .

Let G1 and G2 be two copies of G

Let P be a perfect matching between G1 and G2 joining copied vertices

Let G? be a graph of vertices V (G1) ∪ V (G2) and edges E(G1) ∪ E(G2) ∪ P

For e ∈ E(G1) ∪ E(G2) let ccc?(e) be the weight of the original edge e on G

For e ∈ P let ccc?(e) = 0

Theorem
The maximal weight of a perfect matching in G? equals twice the maximal weight of a
matching in G.

Note
For maximal-size matching, use weights ccc = 111.

Tutte’s matching theorem
A graph G has a perfect matching if and only if oc(G \ A) ≤ |A| for every A ⊆ V .
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