Problem 1 (Independent set). A set of vertices S of a graph (V, E) is called independent if no two vertices of S are joined by an edge. Formulate the problem of finding the maximal independent set using Integer Linear Programming.

Solution. First, we need to define a set of variables of a Integer Linear Programming problem. Since the goal of the Independent set problem is to find a subset S of vertices V, we it is natural to use variables $x \in\{0,1\}^{V}$ which correspond to the characteristic vector of S in V.

Second, we specify a set of constrains on variables x to ensure that they encode an independent set. As it stated above, variables x must be binary which is ensured by constrains $0 \leq x \leq 1$ and $x \in \mathbb{Z}^{V}$. Furthermore, we have to guarantee that variables x encode an independent set S which means that for every edge $u v \in E$ an independent set contains at most one vertex of $\{u, v\}$. Since $\boldsymbol{x}_{u}+\boldsymbol{x}_{v}$ is exactly the number of vertices of $\{u, v\}$ in an independent set which is provided by a condition $\boldsymbol{x}_{u}+\boldsymbol{x}_{v} \leq 1$. The last inequality must hold for every edge $u v \in E$, so we use the incidence matrix A to the last inequality in a matrix form $A^{\mathrm{T}} \boldsymbol{x} \leq 1$.

Third, we specify the objective function. Since $1^{\mathrm{T}} \boldsymbol{x}$ corresponds to the number of vertices in an independent set, our objective function maximizes $1^{\mathrm{T}} x$.

In summary, the formulation we are asked to provide is the following.

Maximize	$1^{\mathrm{T}} \boldsymbol{x}$
subject to	$A^{\mathrm{T}} \boldsymbol{x} \leq \mathbf{1}$
	$0 \leq \boldsymbol{x} \leq 1$
	$x \in \mathbb{Z}^{V}$

Now, we need to prove that a solution of (1) already gives an optimal solution of a given instance of the Independent set problem. This means that

1. every optimal solution of x of (1) is an characteristic vector of a maximal independent set,
2. a characteristic vector of every independent is a feasible solution to (1), and
3. if (1) has no solution, then there is no solution to the independent set problem.

Since the trivial solution $x=0$ is a feasible to (1) and the objective function $1^{\mathrm{T}} \boldsymbol{x}$ is bounded above by the number of vertices, (1) always has an optimal solution and the third requirement is satisfied. For arbitrary independent set S, the characteristic vector x of S satisfies all conditions in (1), so the second requirement is satisfied.

In order to prove the first requirement, let \boldsymbol{x}^{\star} be an optimal solution of (1). Clearly, \boldsymbol{x}^{\star} is a binary vector, so we can define a set $S=\left\{v \in V ; \boldsymbol{x}_{v}=1\right\}$ of vertices. The inequality $A^{\mathrm{T}} \boldsymbol{x} \leq \mathbf{1}$ prevents any pair of adjacent vertices being both in S, so the set S corresponding to x^{\star} is an independent set. It remains to prove the optimality of S. Indeed, suppose for the sake of contradiction that there exists an independent set S^{\prime} of larger size than S. From the second requirement it follows that the characteristic vector x^{\prime} of S^{\prime} is feasible to (1). From $1^{\mathrm{T}} \boldsymbol{x}^{\star}=\left|S^{\star}\right|<\left|S^{\prime}\right|=1^{\mathrm{T}} \boldsymbol{x}^{\prime}$ it follows that \boldsymbol{x}^{\star} is not an optimal solution of (1) which is a contradiction.

Problem 2 (Sum-zero problem). Formulate the following problem using Integer Linear Programming: For a given integers $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ find a non-empty set $S \subseteq\{1, \ldots, n\}$ such that the sum $\sum_{i \in S} a_{i}$ is as close to zero as possible, i.e. minimize $\left|\sum_{i \in S} a_{i}\right|$.

Solution. In order to simplify the notation, let \boldsymbol{a} be a vector which composes all given integers $a_{1}, \ldots, a_{n} \in$ \mathbb{Z}. A feasible solution of the Sum-zero problem is a non-empty subset $S \subseteq\{1, \ldots, n\}$, so we introduce variables $\boldsymbol{x} \in\{0,1\}^{n}$ which represent a characteristic vector of S in $\{1, \ldots, n\}$ and we set a condition $1^{\mathrm{T}} \boldsymbol{x} \geq 1$ to ensure that x encodes a non-empty set. Although an objective function $\left|\boldsymbol{a}^{\mathrm{T}} \boldsymbol{x}\right|$ is a proper mathematical function, its is not a linear function, so we cannot use it a Linear programming problem. Hence, we use a standard approach to handle the absolute value: Introduce a new variable z, add constrains $z \geq \boldsymbol{a}^{\mathrm{T}} \boldsymbol{x}$ and $z \geq-\boldsymbol{a}^{\mathrm{T}} \boldsymbol{x}$, and replace the objective function by a function minimizing z.

In summary, the formulation we are asked to provide is the following.

$$
\begin{array}{ll}
\text { Minimize } & z \\
\text { subject to } & z-\boldsymbol{a}^{\mathrm{T}} \boldsymbol{x} \geq 0 \\
& z+\boldsymbol{a}^{\mathrm{T}} \boldsymbol{x} \geq 0 \\
& \mathbf{1}^{\mathrm{T}} \boldsymbol{x} \geq 1 \tag{2}\\
& \mathbf{0} \leq \boldsymbol{x} \leq \mathbf{1} \\
& \boldsymbol{x} \in \mathbb{Z}^{V}
\end{array}
$$

Since the problem (2) has a feasible solution $x=1$ and $z=\left|\mathbf{1}^{\mathrm{T}} \boldsymbol{x}\right|$ and the objective function z is bounded below by 0 , the problem (2) always has an optimal solution. So, let x^{\star}, z^{\star} be an optimal solution of (2) and we prove that $S^{\star}=\left\{i ; \boldsymbol{x}_{i}^{\star}=1\right\}$ is an optimal solution of the Sum-zero problem. Since $1^{\mathrm{T}} \boldsymbol{x} \geq 1$, the subset S^{\star} is a feasible solution. Suppose for the sake of contradiction that there exists a non-empty subset $S^{\prime} \subseteq\{1, \ldots, n\}$ such that $\left|\sum_{i \in S^{\prime}} a_{i}\right|<\left|\sum_{i \in S^{\star}} a_{i}\right|$. Let x^{\prime} be a characteristic vector of $S^{\prime \prime}$ in $\{1, \ldots, n\}$ and z^{\prime} be $\left|\mathbf{1}^{\mathrm{T}} \boldsymbol{x}^{\prime}\right|$. Clearly, $\boldsymbol{x}^{\prime}, z^{\prime}$ is a feasible solution of (2). From $z^{\prime}=\left|\mathbf{1}^{\mathrm{T}} \boldsymbol{x}^{\prime}\right|=\left|\sum_{i \in S^{\prime}} a_{i}\right|<$ $\left|\sum_{i \in S^{\star}} a_{i}\right|=\left|\mathbf{1}^{\mathrm{T}} \boldsymbol{x}^{\star}\right| \leq z^{\star}$ it follows that $\boldsymbol{x}^{\star}, z^{\star}$ is not an optimal solution of (2) which is a contradiction.

