Problems 5 and 6 are for homework. Solutions must be submitted before the next lecture (not tutorial!) to be evaluated. Students are not allowed to keep submitted solutions after evaluation.

Problem 1. Consider the polyhedron *P* given by the following conditions.

- 1. Draw the polyhedron P.
- 2. Using the Simplex methods find all vertices of P.
- 3. Find the optimal solution of the problem $\min \{x_1 + 2x_2; x \in P\}$.
- 4. Find the optimal solution of the problem $\max \{3x_1 + x_2; x \in P\}$.

Problem 2. Solve the following problem

Problem 3. Solve the following problem

Minimize	$-2x_{1}$	+	$4x_2$	—	x_3		
subject to	$3x_1$	—	$6x_2$	+	$4x_3$	\leq	30
	$2x_1$	—	$8x_2$	+	$10x_{3}$	\geq	18
				x_1 ,	x_2, x_3	\geq	0

Problem 4. Solve the following linear programming problem.

Problem 5. Find all optimal vertices of the following problem.

Maximize	$2x_1$	+	$3x_2$	+	$5 x_3$	+	$4 x_4$		
subject to	x_1	+	$2x_2$	+	$3x_3$	+	x_4	\leq	5
	x_1	+	x_2	+	$2x_3$	+	$3x_4$	\leq	3
	x_1	+	x_2	+	$2x_3$	+	$7 x_4$	\geq	3
	x_1, x_2, x_3, x_4							\geq	0

Problem 6. Solve the following problem

Maximize				$10 x_1$	_	$57 x_2$	_	$9 x_3$	_	$24 x_4$
subject to	x_5	=	—	$0,5 x_1$	+	$5,5 x_2$	+	$2,5 x_3$	_	$9x_4$
	x_6	=	_	$0,5 x_1$	+	$1,5 x_2$	+	$0,5 x_3$	—	x_4
	x_7	=	1 -	x_1						
	$x_1,$	x_2, z	x_3, x_4, x_4	$x_5, x_6, x_7 \ge 0$						

First, try to use the pivot rule "largest coefficient". Then, solve the problem using "Bland rule".