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Example of linear programming: Optimized diet

Express using linear programming the following problem
Find the cheapest vegetable salad from carrots, white cabbage and cucumbers
containing required amount the vitamins A and C and dietary fiber.

Food Carrot White cabbage Cucumber Required per meal
Vitamin A [mg/kg] 35 0.5 0.5 0.5 mg
Vitamin C [mg/kg] 60 300 10 15 mg
Dietary fiber [g/kg] 30 20 10 4 g
Price [EUR/kg] 0.75 0.5 0.15

Formulation using linear programming

Carrot White cabbage Cucumber
Minimize 0.75xxx1 + 0.5xxx2 + 0.15xxx3 Cost
subject to 35xxx1 + 0.5xxx2 + 0.5xxx3 ≥ 0.5 Vitamin A

60xxx1 + 300xxx2 + 10xxx3 ≥ 15 Vitamin C
30xxx1 + 20xxx2 + 10xxx3 ≥ 4 Dietary fiber

xxx1,xxx2,xxx3 ≥ 0
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Matrix notation of Linear programming problem

Formulation using linear programming

Minimize 0.75xxx1 + 0.5xxx2 + 0.15xxx3

subject to 35xxx1 + 0.5xxx2 + 0.5xxx3 ≥ 0.5
60xxx1 + 300xxx2 + 10xxx3 ≥ 15
30xxx1 + 20xxx2 + 10xxx3 ≥ 4

xxx1,xxx2,xxx3 ≥ 0

Matrix notation
Minimize 15

10
3

T xxx1

xxx2

xxx3


Subject to 35 0.5 0.5

60 300 10
30 20 10

xxx1

xxx2

xxx3

 ≥
0.5

15
4


a xxx1,xxx2,xxx3 ≥ 0
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Notation: Vector and matrix

Matrix
A matrix of type m × n is a rectangular array of m rows and n columns of real numbers.
Matrices are written as A, B, C, etc.

Vector
A vector is an n-tuple of real numbers. Vectors are written as ccc, xxx , yyy , etc. Usually,
vectors are column matrices of type n × 1.

Scalar
A scalar is a real number. Scalars are written as a, b, c, etc.

Special vectors
000 and 111 are vectors of zeros and ones, respectively.

Transpose

The transpose of a matrix A is matrix AT created by reflecting A over its main diagonal.
The transpose of a column vector xxx is the row vector xxxT.
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Notation: Matrix product

Elements of a vector and a matrix
The i-th element of a vector xxx is denoted by xxx i .

The (i , j)-th element of a matrix A is denoted by Ai,j .

The i-th row of a matrix A is denoted by Ai,?.

The j-th column of a matrix A is denoted by A?,j .

Dot product of vectors

The dot product (also called inner product or scalar product) of vectors xxx ,yyy ∈ Rn is the
scalar xxxTyyy =

∑n
i=1 xxx iyyy i .

Product of a matrix and a vector

The product Axxx of a matrix A ∈ Rm×n of type m × n and a vector xxx ∈ Rn is a vector
yyy ∈ Rm such that yyy i = Ai,?xxx for all i = 1, . . . ,m.

Product of two matrices

The product AB of a matrix A ∈ Rm×n and a matrix B ∈ Rn×k a matrix C ∈ Rm×k such
that C?,j = AB?,j for all j = 1, . . . , k .
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Notation: System of linear equations and inequalities

Equality and inequality of two vectors

For vectors xxx ,yyy ∈ Rn we denote

xxx = yyy if xxx i = yyy i for every i = 1, . . . , n and

xxx ≤ yyy if xxx i ≤ yyy i for every i = 1, . . . , n.

System of linear equations

Given a matrix A ∈ Rm×n of type m × n and a vector bbb ∈ Rm, the formula Axxx = bbb
means a system of m linear equations where xxx is a vector of n real variables.

System of linear inequalities

Given a matrix A ∈ Rm×n of type and a vector bbb ∈ Rm, the formula Axxx ≤ bbb means a
system of m linear inequalities where xxx is a vector of n real variables.

Example: System of linear inequalities in two different notations

2xxx1 + xxx2 + xxx3 ≤ 14
2xxx1 + 5xxx2 + 5xxx3 ≤ 30

(
2 1 1
2 5 5

)xxx1

xxx2

xxx3

 ≤ (14
30

)
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Optimization

Mathematical optimization
is the selection of a best element (with regard to some criteria) from some set of
available alternatives.

Examples

Minimize x2 + y2 where (x , y) ∈ R2

Maximal matching in a graph

Minimal spanning tree

Shortest path between given two vertices

Optimization problem
Given a set of solutions M and an objective function f : M → R, optimization problem is
finding a solution x ∈ M with the maximal (or minimal) objective value f (x) among all
solutions of M.

Duality between minimization and maximization
If minx∈M f (x) exists, then also maxx∈M −f (x) exists and
−minx∈M f (x) = maxx∈M −f (x).
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Linear Programming

Linear programming problem
A linear program is the problem of maximizing (or minimizing) a given linear function
over the set of all vectors that satisfy a given system of linear equations and
inequalities.

Equation form: mincccTxxx subject to Axxx = bbb,xxx ≥ 000

Canonical form: maxcccTxxx subject to Axxx ≤ bbb,

where ccc ∈ Rn, bbb ∈ Rm, A ∈ Rm×n a xxx ∈ Rn.

Conversion from the equation form to the canonical form

max−cccTxxx subject to Axxx ≤ bbb,−Axxx ≤ −bbb,−xxx ≤ 000

Conversion from the canonical form to the equation form

min−cccTxxx ′ + cccTxxx ′′ subject to Axxx ′ − Axxx ′′ + Ixxx ′′′ = bbb, xxx ′,xxx ′′,xxx ′′′ ≥ 000
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Terminology

Basic terminology
Number of variables: n

Number of constrains: m

Solution: an arbritrary vector xxx of Rn

Objective function: e.g. maxcccTxxx

Feasible solution: a solution satisfying all constrains, e.g. Axxx ≤ bbb

Optimal solution: a feasible solution maximizing cccTxxx

Infeasible problem: a problem having no feasible solution

Unbounded problem: a problem having a feasible solution with arbitrary large
value of given objective function

Polyhedron: a set of points xxx ∈ Rn satisfying Axxx ≤ bbb for some A ∈ Rm×n and
bbb ∈ Rm

Polytope: a bounded polyhedron
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Example of linear programming: Network flow

Network flow problem

Given a direct graph (V ,E) with capacities ccc ∈ RE and a source s ∈ V and a sink
t ∈ V , find the maximal flow from s to t satisfying the flow conservation and capacity
constrains.

Formulation using linear programming

Variables: flow fff e for every edge e ∈ E

Capacity constrains: 000 ≤ fff ≤ ccc

Flow conservation:
∑

uv∈E fff uv =
∑

vw∈E fff vw for every v ∈ V \ {s, t}
Objective function: Maximize

∑
sw∈E fff sw −

∑
us∈E fff us

Matrix notation
• Add an auxiliary edge xxx ts with a sufficiently large capacity cccts

Objective function: maxxxx ts

Flow conservation: Axxx = 000 where A is the incidence matrix

Capacity constrains: xxx ≤ ccc and xxx ≥ 0
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Graphical method: Set of feasible solutions

Example
Draw the set of all feasible solutions (xxx1,xxx2) satisfying the following conditions.

xxx1 + 6xxx2 ≤ 15
4xxx1 − xxx2 ≤ 10
−xxx1 + xxx2 ≤ 1

xxx1,xxx2 ≥ 0

Solution

xxx1 ≥ 0 xxx2 − xxx1 ≤ 1

xxx1 + 6xxx2 ≤ 15

4xxx1 − xxx2 ≤ 10

xxx2 ≥ 0

(0, 0)
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Graphical method: Optimal solution

Example
Find the optimal solution of the following problem.

Maximize xxx1 + xxx2

xxx1 + 6xxx2 ≤ 15
4xxx1 − xxx2 ≤ 10
−xxx1 + xxx2 ≤ 1

xxx1,xxx2 ≥ 0

Solution

(0, 0)

(3, 2)

(1, 1)

cccTxxx = 0

cccTxxx = 1

cccTxxx = 2

cccTxxx = 5
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Graphical method: Multiple optimal solutions

Example
Find all optimal solutions of the following problem.

Maximize 1
6xxx1 + xxx2

xxx1 + 6xxx2 ≤ 15
4xxx1 − xxx2 ≤ 10
−xxx1 + xxx2 ≤ 1

xxx1,xxx2 ≥ 0

Solution

(0, 0)

( 1
6 , 1)

cccTxxx = 10
3
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Graphical method: Unbounded problem

Example
Show that the following problem is unbounded.

Maximize xxx1 + xxx2

−xxx1 + xxx2 ≤ 1
xxx1,xxx2 ≥ 0

Solution

(0, 0)

(1, 1)
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Graphical method: Infeasible problem

Example
Show that the following problem has no feasible solution.

Maximize xxx1 + xxx2

xxx1 + xxx2 ≤ −2
xxx1,xxx2 ≥ 0

Solution

xxx2 ≥ 0
xxx1 ≥ 0

xxx1 + xxx2 ≤ −2

(0, 0)
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Related problems

Integer linear programming

Integer linear programming problem is an optimization problem to find xxx ∈ Zn which
maximizes cccTxxx and satisfies Axxx ≤ bbb where A ∈ Rm×n and bbb ∈ Rm.

Mix integer linear programming
Some variables are integer and others are real.

Binary linear programming
Every variable is either 0 or 1.

Complexity
A linear programming problem is efficiently solvable, both in theory and in practice.

The classical algorithm for linear programming is the Simplex method which is fast
in practice but it is not known whether it always run in polynomial time.

Polynomial time algorithms the ellipsoid and the interior point methods.

No strongly polynomial-time algorithms for linear programming is known.

Integer linear programming is NP-hard.
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Example of integer linear programming: Vertex cover

Vertex cover problem
Given an undirected graph (V ,E), find the smallest set of vertices U ⊆ V covering
every edge of E ; that is, U ∪ e 6= ∅ for every e ∈ E .

Formulation using integer linear programming

Variables: cover xxxv ∈ {0, 1} for every vertex v ∈ V

Covering: xxxu + xxxv ≥ 1 for every edge uv ∈ E

Objective function: Minimize
∑

v∈V xxxv

Matrix notation

Variables: cover xxx ∈ {0, 1}V (i.e. 000 ≤ xxx ≤ 111 and xxx ∈ ZV )

Covering: ATxxx ≥ 111 where A is the incidence matrix

Objective function: Minimize 111Txxx
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Relation between optimal integer and relaxed solution

Non-empty polyhedron may not contain an integer solution

Integer feasible solution may not be obtained by rounding of a relaxed solution

c

Relaxed optimum

Integral optimum
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Example: Ice cream production planning

Problem description
An ice cream manufacturer needs to plan production of ice cream for next year

The estimated demand of ice cream for month i ∈ {1, . . . , n} is ddd i (in tons)

Storage facilities for 1 ton of ice cream cost a per month

Changing the production by 1 ton from month i − 1 to month i cost b

Produced ice cream cannot be stored longer than one month

The total cost has to be minimized
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Example: Ice cream production planning

Solution
Variable xxx i determines the amount of produced ice cream in month i ∈ {0, . . . , n}
Variable sssi determines the amount of stored ice cream from month i − 1 month i

The stored quantity is computed by sssi = sssi−1 + xxx i − ddd i for every i ∈ {1, . . . , n}
Durability is ensured by sssi ≤ ddd i for all i ∈ {1, . . . , n}
Non-negativity of the production and the storage xxx ,sss ≥ 000

Objective function min b
∑n

i=1 |xxx i − xxx i−1|+ a
∑n

i=1 sssi is non-linear

Let yyy i ≥ 0 and zzz i ≥ 0 be the increment and the decrement of production, reps.,
and xxx i − xxx i−1 = yyy i − zzz i

Linear programming problem formulation

Minimize b
∑n

i=1(yyy i + zzz i ) + a
∑n

i=1 sssi

subject to sssi−1 − sssi + xxx i = ddd i for i ∈ {1, . . . , n}
sssi ≤ ddd i for i ∈ {1, . . . , n}

xxx ,sss,yyy ,zzz ≥ 000

We can bound the initial and final amount of ice cream sss0 a sssn

and also bound the production xxx0
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Finding shortest paths from a vertex s in an oriented graph

Linear programming problem

Maximize
∑

u∈V xxxu

subject to xxxv − xxxu ≤ cccuv for every edge uv
xxxs = 0

Proof (the optimal solution xxx?
u gives the distance from s to u ∀u ∈ V )

1 Let yyyu be the length of the shortest path from s to u
2 It holds that yyy ≥ xxx?

Let P be edges on the shortest path from s to z
yyyz =

∑
uv∈P cccuv ≥

∑
uv xxx?v − xxx?u = xxx?z − yyy?s = xxx?z

3 It holds that yyy = xxx?

For the sake of contradiction assume that yyy 6= xxx?
So yyy ≥ xxx? and

∑
u∈V yyyu >

∑
u∈V xxx?u

But yyy is a feasible solution and xxx? is an optimal solution
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Linear space

Definition: Linear (vector) space
A set (V ,+, ·) is called a linear (vector) space over a field T if

+ : V × V → V i.e. V is closed under addition +

· : T × V → V i.e. V is closed under multiplication by T

(V ,+) is an Abelian group

For every xxx ∈ V it holds that 1 · xxx = xxx where 1 ∈ T

For every a, b ∈ T and every xxx ∈ V it holds that (ab) · xxx = a · (b · xxx)

For every a, b ∈ T and every xxx ∈ V it holds that (a + b) · xxx = a · xxx + b · xxx
For every a ∈ T and every xxx ,yyy ∈ V it holds that a · (xxx + yyy) = a · xxx + a · yyy

Observation
If V is a linear space and L ⊆ V , then L is a linear space if and only if

000 ∈ L,

xxx + yyy ∈ L for every xxx ,yyy ∈ L and

αxxx ∈ L for every xxx ∈ L and α ∈ T .
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Linear and affine spaces in Rn

Observation
A non-empty set V ⊆ Rn is a linear space if and only if αxxx + βyyy ∈ V for all α, β ∈ R,
xxx ,yyy ∈ V .

Definition
If V ⊆ Rn is a linear space and aaa ∈ Rn is a vector, then V + aaa is called an affine space
where V + aaa = {xxx + aaa; xxx ∈ V}.

Basic observations
If L ⊆ Rn is an affine space, then L + xxx is an affine space for every xxx ∈ Rn.

If L ⊆ Rn is an affine space, then L− xxx is a linear space for every xxx ∈ L. 1

If L ⊆ Rn is an affine space, then L− xxx = L− yyy for every xxx ,yyy ∈ L. 2

An affine space L ⊆ Rn is linear if and only if L contains the origin 000. 3

System of linear equations
The set of all solutions of Axxx = 000 is a linear space and every linear space is the
set of all solutions of Axxx = 000 for some A. 4

The set of all solutions of Axxx = bbb is an affine space and every affine space is the
set of all solutions of Axxx = bbb for some A and bbb, assuming Axxx = bbb is consistent. 5
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1 By definition, L = V + aaa for some linear space V and some vector aaa ∈ Rn.
Observe that L− xxx = V + (aaa− xxx) and we prove that V + (aaa− xxx) = V which
implies that L− xxx is a linear space. There exists yyy ∈ V such that xxx = yyy + aaa.
Hence, aaa− xxx = aaa− yyy − aaa = −yyy ∈ V . Since V is closed under addition, it follows
that V + (aaa− xxx) ⊆ V . Similarly, V − (aaa− xxx) ⊆ V which implies that
V ⊆ V + (aaa− xxx). Hence, V = V + (aaa− xxx) and the statement follows.

2 We proved that L = V + aaa for some linear space V ⊆ Rn and some vector aaa ∈ Rn

and L− xxx = V + (aaa− xxx) = V for every xxx ∈ L. So, L− xxx = V = L− yyy .
3 Every linear space must contain the origin by definition. For the opposite

implication, we set xxx = 000 and apply the previous statement.
4 If V is a linear space, then we can obtain rows of A from the basis of the

orthogonal space of V .
5 If L is an affine space, then L = V + aaa for some vector space V and some vector aaa

and there exists a matrix A such that V = {xxx ; Axxx = 000}. Hence,
V + aaa = {xxx + aaa; Axxx = 000} = {yyy ; Ayyy − Aaaa = 000} = {yyy ; Ayyy = bbb} where we
substitute xxx + aaa = yyy and set bbb = Aaaa.
If L = {xxx ; Axxx = bbb} is non-empty, then let yyy be an arbitrary vertex of L.
Furthermore, L− yyy = {xxx − yyy ; Axxx = bbb} = {zzz; Ayyy + Azzz = bbb} = {zzz; Azzz = 000} is a
linear space since Ayyy = bbb.
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Convex set

Observation
A set S ⊆ Rn is an affine space if and only if S contains whole line given every two
points of S.

Definition
A set S ⊆ Rn is convex if S contains whole segment between every two points of S.

Example

a

b

u

v
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Linear, affine and convex hulls

Observation

The intersection of linear spaces is also a linear space. 1

The non-empty intersection of affine spaces is an affine space. 2

The intersection of convex sets is also a convex set. 3

Definition
Let S ⊆ Rn be an non-empty set.

The linear hull span(S) of S is the intersection of all linear sets containing S.

The affine hull aff(S) of S is the intersection of all affine sets containing S.

The convex hull conv(S) of S is the intersection of all convex sets containing S.

Observation
Let S ⊆ Rn be an non-empty set.

A set S is linear if and only if S = span(S). 4

A set S is affine if and only if S = aff(S). 5

A set S is convex if and only if S = conv(S). 6

span(S) = aff(S ∪ {000})
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1 Use definition and logic.
2 Let Li be affine space for i in an index set I and L = ∩i∈ILi and aaa ∈ L. We proved

that L− aaa =
⋂

i∈I(Li − aaa) is a linear space which implies that L is an affine space.
3 Use definition and logic.
4 Similar as the convex version.
5 Similar as the convex version.
6 We proved that conv(S) is convex, so if S = conv(S), then S is convex. In order to

prove that S = conv(S) if S is convex, we observe that conv(S) ⊆ S since
conv(S) =

⋂
M⊇S,M convex and S is included in this intersection. Similarly,

conv(S) ⊇ S since every M in the intersection contains S.
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Linear, affine and convex combinations

Definition
Let vvv1, . . . ,vvv k be vectors of Rn where k is a positive integer.

The sum
∑k

i=1 αivvv i is called a linear combination if α1, . . . , αk ∈ R.

The sum
∑k

i=1 αivvv i is called an affine combination if α1, . . . , αk ∈ R
∑k

i=1 αi = 1.

The sum
∑k

i=1 αivvv i is called a convex combination if α1, . . . , αk ≥ 0 and∑k
i=1 αi = 1.

Lemma
Let S ⊆ Rn be a non-empty set.

The set of all linear combinations of S is a linear space. 1

The set of all affine combinations of S is an affine space. 2

The set of all convex combinations of S is a convex set. 3

Lemma

A linear space S contains all linear combinations of S. 4

An affine space S contains all affine combinations of S. 5

A convex set S contains all convex combinations of S. 6
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1 We have to verify that the set of all linear combinations has closure under addition
and multiplication by scalars. In order to verify the closure under multiplication, let∑k

i=1 αivvv i be a linear combination of S and c ∈ R be a scalar. Then,
c
∑k

i=1 αivvv i =
∑k

i=1(cαi )vvv i is a linear combination of of S. Similarly, the set of all
linear combinations has closure under addition and it contains the origin.

2 Similar as the convex version: Show that S contains whole line defined by
arbitrary pair of points of S.

3 Let
∑k

i=1 αiuuu i and
∑l

j=1 βjvvv j be two convex combinations of S. In order to prove
that the set of all convex combinations of S contains the line segment between∑k

i=1 αiuuu i and
∑l

j=1 βjvvv j , let us consider γ1, γ2 ≥ 0 such that γ1 + γ2 = 1. Then,
γ1
∑k

i=1 αiuuu i + γ2
∑l

j=1 βjvvv j =
∑k

i=1(γ1αi )uuu i +
∑l

j=1(γ2βj )vvv j is a convex
combination of S since (γ1αi ), (γ2βj ) ≥ 0 and

∑k
i=1(γ1αi ) +

∑l
j=1(γ2βj ) = 1.

4 Similar as the convex version.
5 Let

∑k
i=1 αivvv i be an affine combination of S. Since S − vvv k is a linear space, the

linear combination
∑k

i=1 αi (vvv i − vvv k ) of S − vvv k belongs into S − vvv k . Hence,
vvv k +

∑k
i=1 αi (vvv i − vvv k ) =

∑k
i=1 αivvv i belongs to S.

6 We prove by induction on k that S contains every convex combination
∑k

i=1 αivvv i of
S. The statement holds for k ≤ 2 by the definition of a convex set. Let

∑k
i=1 αivvv i

be a convex combination of k vectors of S and we assume that αk < 1, otherwise
α1 = · · · = αk−1 = 0 so

∑k
i=1 αivvv i = vvv k ∈ S. Hence,∑k

i=1 αivvv i = (1− αk )
∑k

i=1
αi

1−αk
vvv i + αkvvv k = (1− αk )yyy + αkvvv k where we observe
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that yyy :=
∑k

i=1
αi

1−αk
vvv i is a convex combination of k − 1 vectors of S which by

induction belongs to S. Furthermore, (1− αk )yyy + αkvvv k is a convex combination of
S which by induction also belongs to S.
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Linear, affine and convex combinations

Theorem
Let S ⊆ Rn be a non-empty set.

The linear hull of a set S is the set of all linear combinations of S. 1

The affine hull of a set S is the set of all affine combinations of S. 2

The convex hull of a set S is the set of all convex combinations of S. 3
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1 Similar as the convex version.
2 Similar as the convex version.
3 Let T be the set of all convex combinations of S. First, we prove that conv(S) ⊆ T .

The definition states that conv(S) =
⋂

M⊇S,M convex M and we proved that T is a
convex set containing S, so T is included in this intersection which implies that
conv(S) is a subset of T .
In order to prove conv(S) ⊇ T , we again consider the intersection
conv(S) =

⋂
M⊇S,M convex M. We proved that a convex set M contains all convex

combinations of M which implies that if M ⊇ S then M also contains all convex
combinations of S. So, in this intersection every M contains T which implies that
conv(S) ⊇ T .
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Independence and base

Definition
A set of vectors S ⊆ Rn is linearly independent if no vector of S is a linear
combination of other vectors of S.

A set of vectors S ⊆ Rn is affinely independent if no vector of S is an affine
combination of other vectors of S.

Observation (Homework)

Vectors vvv1, . . . ,vvv k ∈ Rn are linearly dependent if and only if there exists a
non-trivial combination α1, . . . , αk ∈ R such that

∑k
i=1 αivvv i = 000.

Vectors vvv1, . . . ,vvv k ∈ Rn are affinely dependent if and only if there exists a
non-trivial combination α1, . . . , αk ∈ R such that

∑k
i=1 αivvv i = 000 a

∑k
i=1 αi = 0.

Observation
Vectors vvv0, . . . ,vvv k ∈ Rn are affinely independent if and only if vectors
vvv1 − vvv0, . . . ,vvv k − vvv0 are linearly independent. 1

Vectors vvv1, . . . ,vvv k ∈ Rn are linearly independent if and only if vectors 000,vvv1, . . . ,vvv k

are affinely independent. 2
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1 If vectors vvv1 − vvv0, . . . ,vvv k − vvv0 are linearly dependent, then there exists a
non-trivial combination α1, . . . , αk ∈ R such that

∑k
i=1 αi (vvv i − vvv0) = 000. In this

case, 000 =
∑k

i=1 αi (vvv i − vvv0) =
∑k

i=1 αivvv i − vvv0
∑k

i=1 αi =
∑k

i=0 αivvv i is a non-trivial
affine combination with

∑k
i=0 αi = 0 where α0 = −

∑k
i=1 αi .

f vvv0, . . . ,vvv k ∈ Rn are affinely dependent, then there exists a non-trivial
combination α0, . . . , αk ∈ R such that

∑k
i=0 αivvv i = 000 a

∑k
i=0 αi = 0. In this case,

000 =
∑k

i=0 αivvv i = α0vvv0 +
∑k

i=1 αivvv i =
∑k

i=1 αi (vvv i − vvv0) is a non-trivial linear
combination of vectors vvv1 − vvv0, . . . ,vvv k − vvv0.

2 Use the previous observation with vvv0 = 000.
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Basis

Definition
Let B ⊆ Rn and S ⊆ Rn.

B is a base of a linear space S if B are linearly independent and span(B) = S.

B is an base of an affine space S if B are affinely independent and aff(B) = S.

Observation
All linear bases of a linear space have the same cardinality.

All affine bases of an affine space have the same cardinality. 1

Observation
Let S be a linear space and B ⊆ S \ {000}. Then, B is a linear base of S if and only if
B ∪ {000} is an affine base of S.

Definition
The dimension of a linear space is the cardinality of its linear base.

The dimension of an affine space is the cardinality of its affine base minus one.

The dimension dim(S) of a set S ⊆ Rn is the dimension of affine hull of S.
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1 For the sake of contradiction, let aaa1, . . . ,aaak and bbb1, . . . ,bbbl be two basis of an affine
space L = V + xxx where V a linear space and l > k . Then, aaa1 − xxx , . . . ,aaak − xxx and
bbb1 − xxx , . . . ,bbbl − xxx are two linearly independent sets of vectors of V . Hence, there
exists i such that aaa1 − xxx , . . . ,aaak − xxx ,bbbi − xxx are linearly independent, so
aaa1, . . . ,aaak ,bbbi are affinely independent. Therefore, bbbi cannot be obtained by an
affine combination of aaa1, . . . ,aaak and bbbi /∈ aff(aaa1, . . . ,aaak ) which contradicts the
assumption that aaa1, . . . ,aaak is a basis of L.
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Carathéodory

Theorem (Carathéodory)

Let S ⊆ Rn. Every point of conv(S) is a convex combinations of affinely independent
points of S. 1

Corollary

Let S ⊆ Rn be a set of dimension d . Then, every point of conv(S) is a convex
combinations of at most d + 1 points of S.
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1 Let xxx ∈ conv(S). Let xxx =
∑k

i=1 αixxx i be a convex combination of points of S with
the smallest k . If xxx1, . . . ,xxxk are affinely dependent, then there exists a combination
000 =

∑
βixxx i such that

∑
βi = 0 and βββ 6= 000. Since this combination is non-trivial,

there exists j such that βj > 0 and αj
βj

is minimal. Let γi = αi −
αjβi
βj

. Observe that

xxx =
∑

i 6=j γixxx i∑
i 6=j γi = 1

γi ≥ 0 for all i 6= j

which contradicts the minimality of k .
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3 Simplex method

4 Duality of linear programming
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6 Vertex Cover

7 Matching
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Notation

Notation used in the Simplex method

Equation form: Maximize cccTxxx such that Axxx = bbb and xxx ≥ 000
where A ∈ Rm×n and bbb ∈ Rm.

We assume that rows of A are linearly independent.

For a subset B ⊆ {1, . . . , n}, let AB be the matrix consisting of columns of A
whose indices belong to B.

Similarly for vectors, xxxB denotes the coordinates of xxx whose indices belong to B.

The set N = {1, . . . , n} \ B denotes the remaining columns.

Example
Consider B = {2, 4}. Then, N = {1, 3, 5} and

A =

(
1 3 5 6 0
2 4 8 9 7

)
AB =

(
3 6
4 9

)
AN =

(
1 5 0
2 8 7

)
xxxT = (3, 4, 6, 2, 7) xxxT

B = (4, 2) xxxT
N = (3, 6, 7)

Note that Axxx = ABxxxB + ANxxxN .
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Geometrical interpretation of basis solutions

1 For a system Axxx = bbb with n variables and n linearly independent conditions, there
exists the inverse matrix A−1 and the only feasible solution of Axxx = bbb is
xxx? = A−1bbb.

2 Consider a system Axxx ≤ bbb with n = rank(A) variables and m ≥ n conditions and
select n linearly independent rows A′xxx ≤ bbb′. Then, the system A′xxx = bbb′ has a
solution xxx? = A′−1bbb′.
Moreover, if Axxx? ≤ bbb, then xxx? is a vertex of the polyhedron Axxx ≤ bbb. 1

3 Consider the equation form Axxx = bbb and xxx ≥ 000 and let N be n −m rows of xxx ≥ 000.
If rows of the system Axxx = 000 and xxxN = 000 are linearly independent, then
bbb = Axxx = ABxxxB + ANxxxN = ABxxxB , so xxx? = (xxx?B,xxx

?
N) = (A−1

B bbb,000) where
B = {1, . . . , n} \ N.
Moreover, if xxx?B ≥ 000, then xxx? is a vertex of Axxx = bbb and xxx ≥ 000.

4 Consider the equation form again. If we choose m linearly independent columns B
of A, then conditions Axxx = bbb and xxxN = 000 are linearly independent.
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1 The solution xxx? = A′−1bbb′ will be called a basis solution. Vertices of a polyhedron
will be formally defined later, so we use a geometrical intuition now.
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Basic feasible solutions

Definitions
Consider the equation form Axxx = bbb and xxx ≥ 000 with n variables and rank(A) = m rows.

A set B ⊆ {1, . . . , n} of linearly independent columns of A is called a basis. 1

The basic solution xxx corresponding to a basis B is xxxN = 000 and xxxB = A−1
B bbb.

A basic solution satisfying xxx ≥ 000 is called a basic feasible solution.

xxxB are called basis variables and xxxN are called non-basis variables. 2

Observation
A feasible solution xxx of a Axxx = bbb and xxx ≥ 000 is basis if and only if columns of AK are
linearly independent where K = {j ∈ {1, . . . , n} ; xxx j > 0}. 3 4

Observation

Linear program in the equation form has at most
(n

m

)
basis solutions. 5
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1 Observe that B ⊆ {1, . . . , n} is a basis if and only if AB is a regular matrix.
2 Remember that non-basis variables are always equal to zero.
3 If xxx is a basic feasible solution and B is the corresponding basis, then xxxN = 000 and

so K ⊆ B which implies that columns of AK are also linearly independent.
If columns of AK are linearly independent, then we can extend K into B by adding
columns of A so that columns of AB are linearly independent which implies that B
is a basis of xxx .

4 Note that basis variables can also be zero. In this case, the basis B corresponding
to a basis solution xxx may not be unique since there may be many ways to extend
K into a basis B. This is called degeneracy.

5 There are
(n

m

)
subsets B ⊆ {1, . . . , n} and for some of these subsets AB may not

be regular.
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Optimal basis feasible solutions

Theorem

If the linear program maxcccTxxx subject to Axxx = bbb and xxx ≥ 000 has a feasible solution and
the objective function is bounded from above of the set of all feasible solutions, then
there exists an optimal solution.
Moreover, if an optimal solution exists then there is a basis feasible solution which is
optimal. 1

Lemma
If the objective function of a linear program in the equation form is bounded above,
then for every feasible solution xxx ′ there exists a basis feasible solution xxx? with the
same or larger value of the objective function, i.e. cccTxxx? ≥ cccTxxx ′. 2
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1 If the problem is bounded, one may try to find the optimal solution by finding all
basis feasible solutions. However, this is not an efficient algorithm since the
number of basis grows exponentially.

2 Let xxx? be a feasible solution with cccTxxx? ≥ cccTxxx ′ and the smallest possible size of the set
K =

{
j ∈ {1, . . . , n} ; xxx?j > 0

}
. Let N = {1, . . . , n} \ K .

If columns of AK are linearly independent, then xxx? is a basis solution.
There exists a non-zero vector vvvK such that AKvvvK = 000. Let vvvN = 000.
WLOG: cccTvvv ≥ 000 since we can replace vvv by −vvv .
Consider the line x(t) = xxx? + tvvv for t ∈ R.
For every t ∈ R: Ax(t) = bbb and (x(t))N = 000.
For every t ≥ 0: cccTx(t) ≥ cccTxxx .
If cccTvvv > 0 and vvv ≥ 000, then points x(t) are feasible for every t ≥ 0 and the objective
function cccTxxx(t) = cccTxxx? + tcccTvvv converges to infinity which contradicts assuptions.

If vvv j < 0 for some j ∈ K , then consider j ∈ K with vvv j < 0 and minimal
xxx?

j
−vvv j

. Let

t̄ =
xxx?

j
−vvv j

. Since x (̄t) ≥ 0 and (x (̄t))j = 0, the solution x (̄t) is feasible with smaller

number of positive components than xxx? which is a contradiction.
The remaining case is cccTvvv = 0 and vvv j ≥ 000. Since vvvK is a non-trivial combination, there
exists j ∈ K with vvv j > 000. Replace vvv by −vvv and apply the previous case.
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Convex polyhedrons

Definition

A hyperplane is a set
{
xxx ∈ Rn; aaaTxxx = b

}
where aaa ∈ Rn \ {000} and b ∈ R.

A half-space is a set
{
xxx ∈ Rn; aaaTxxx ≤ b

}
where aaa ∈ Rn \ {000} and b ∈ R.

A polyhedron is an intersection of finitely many half-spaces.

A polytope is a bounded polyhedron.

Observation

For every aaa ∈ Rn and b ∈ R, the set of all xxx ∈ Rn satisfying aaaTxxx ≤ b is convex.

Corollary
Every polyhedron Axxx ≤ bbb is convex.

Examples

n-dimensional hypercube: {xxx ∈ Rn; 000 ≤ xxx ≤ 111}
n-dimensional crosspolytope:

{
xxx ∈ Rn;

∑n
i=1 |xxx i | ≤ 1

}
1

n-dimensional simplex:
{
xxx ∈ Rn+1; xxx ≥ 000, 111xxx = 1

}
2
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1 Formally,
∑n

i=1 |xxx i | ≤ 1 is not a linear inequality. However, it can be replaced by 2n

linear inequalities dddxxx ≤ 1 for all ddd ∈ {−1, 1}n.
2 n-dimensional simplex is a convex hull of n + 1 affinely independent points.
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Faces of a polyhedron

Definition

Let P be a polyhedron. A half-space αααTxxx ≤ β is called a supporting hyperplane of P if
the inequality αααTxxx ≤ β holds for every x ∈ P and the hyperplane αααTxxx = β has a
non-empty intersection with P.

Definition

If αααTxxx ≤ β is a supporting hyperplane of a polyhedron P, then P ∩
{
xxx ; αααTxxx = β

}
is

called a face of P.
By convention, the empty set and P are also called faces, and the other faces are
proper faces. 1

Definition
Let P be a d-dimensional polyhedron.

A 0-dimensional face of P is called a vertex of P.

A 1-dimensional face is of P called an edge of P.

A (d − 1)-dimensional face of P is called an facet of P.
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1 Observe, that every face of a polyhedron is also a polyhedron.
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Vertices

Observations

The set of all optimal solutions of a linear program maxcccTxxx over a polyhedron P is
a face of P. 1

Every proper face of P is a set of all optimal solutions of a linear program maxcccxxx
over a polyhedron P for some ccc ∈ Rn. 2 3

Vertices are unique solutions of linear programs maxcccTxxx over P for some ccc.

Theorem
Let P be the set of all solutions of a linear program in the equation form and vvv ∈ P.
Then the following statements are equivalent.

1 v is a vertex of a polyhedron P.
2 v is a basis feasible solution of the linear program. 4

Theorem

If the linear program maxcccTxxx subject to Axxx = bbb and xxx ≥ 000 has a feasible solution and
the objective function is bounded from above of the set of all feasible solutions, then
there exists an optimal solution.
Moreover, if an optimal solution exists then there is a basis feasible solution which is
optimal.
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1 Let F be the set of all optimal solutions. If F = ∅ or F = P, then F is a face of P by
definition. Otherwise, d = max

{
cccTxxx ; xxx ∈ P

}
exists. Since cccTxxx = d is a

supporting hyperplane of P and F = P ∩
{
xxx ; cccTxxx = d

}
, it follows that F is a face

of P.
2 A proper face F of P is defined as the intersection of P and a supporting

hyperplane cccTxxx = d , so F is the set of all optimal solutions of the linear program
maxcccTxxx over P.

3 Note that P is also the set of all optimal solutions of a linear program for ccc = 000. On
the other hand, if P is non-empty and bounded, then the empty set cannot be
express as a set of all optimal solutions for any ccc.

4 ⇒ Follows from the following theorem.
⇐ Let B be the basis defining v and let cccB = 000 and cccN =−1−1−1. Then

cccTvvv = cccT
BvvvB + cccT

NvvvN = 0 and for every feasible xxx it holds holds that xxx ≥ 000, so cccTxxx ≤ 0.
Hence, vvv is a optimal solution of the linear program with the objective function maxcccTxxx .
Furthermore, vvv is the only optimal solution since every optimal solution xxx must satisfy
xxxN = 0. In this case, xxxB = A−1

B bbb is unique.
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Example: Initial simplex tableau

Canonical form

Maximize xxx1 + xxx2

subject to −xxx1 + xxx2 ≤ 1
xxx1 ≤ 3

xxx2 ≤ 2
xxx1,xxx2 ≥ 0

Equation form

Maximize xxx1 + xxx2

subject to −xxx1 + xxx2 + xxx3 = 1
xxx1 + xxx4 = 3

xxx2 + xxx5 = 2
xxx1,xxx2,xxx3,xxx4,xxx5 ≥ 0

Simplex tableau

xxx3 = 1 + xxx1 − xxx2

xxx4 = 3 − xxx1

xxx5 = 2 − xxx2

z = xxx1 + xxx2
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Example: Initial simplex tableau

Simplex tableau

xxx3 = 1 + xxx1 − xxx2

xxx4 = 3 − xxx1

xxx5 = 2 − xxx2

z = xxx1 + xxx2

Initial basic feasible solution
B = {3, 4, 5}, N = {1, 2}
xxx = (0, 0, 1, 3, 2)

Pivot
Two edges from the vertex (0, 0, 1, 3, 2):

1 (t , 0, 1 + t , 3− t , 2) when xxx1 is increased by t
2 (0, r , 1− r , 3, 2− r) when xxx2 is increased by r

These edges give feasible solutions for:
1 t ≤ 3 since xxx3 = 1 + t ≥ 0 and xxx4 = 3− t ≥ 0 and xxx5 = 2 ≥ 0
2 r ≤ 1 since xxx3 = 1− r ≥ 0 and xxx4 = 3 ≥ 0 and xxx5 = 2− r ≥ 0

In both cases, the objective function is increasing. We choose xxx2 as a pivot.
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Example: Pivot step

Simplex tableau

xxx3 = 1 + xxx1 − xxx2

xxx4 = 3 − xxx1

xxx5 = 2 − xxx2

z = xxx1 + xxx2

Basis
Original basis B = {3, 4, 5}
xxx2 enters the basis (by our choice).

(0, r , 1− r , 3, 2− r) is feasible for r ≤ 1 since xxx3 = 1− r ≥ 0.

Therefore, xxx3 leaves the basis.

New base B = {2, 4, 5}

New simplex tableau

xxx2 = 1 + xxx1 − xxx3

xxx4 = 3 − xxx1

xxx5 = 1 − xxx1 + xxx3

z = 1 + 2xxx1 − xxx3
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Example: Next step

Simplex tableau

xxx2 = 1 + xxx1 − xxx3

xxx4 = 3 − xxx1

xxx5 = 1 − xxx1 + xxx3

z = 1 + 2xxx1 − xxx3

Next pivot
Basis B = {2, 4, 5} with a basis feasible solution (0, 1, 0, 3, 1).

This vertex has two incident edges but only one increases the objective function.

The edge with increasing objective function is (t , 1 + t , 0, 3− t , 1− t).

Feasible solutions for xxx2 = 1 + t ≥ 0 and xxx4 = 3− t ≥ 0 and xxx5 = 1− t ≥ 0.

Therefore, xxx1 enters the basis and xxx5 leaves the basis.

New simplex tableau

xxx1 = 1 + xxx3 − xxx5

xxx2 = 2 − xxx5

xxx4 = 2 − xxx3 + xxx5

z = 3 + xxx3 − 2xxx5
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Example: Last step

Simplex tableau

xxx1 = 1 + xxx3 − xxx5

xxx2 = 2 − xxx5

xxx4 = 2 − xxx3 + xxx5

z = 3 + xxx3 − 2xxx5

Next pivot
Basis B = {1, 2, 4} with a basis feasible solution (1, 2, 0, 2, 0).

This vertex has two incident edges but only one increases the objective function.

The edge with increasing objective function is (1 + t , 2, t , 2− t , 0).

Feasible solutions for xxx1 = 1 + t ≥ 0 and xxx2 = 2 ≥ 0 and xxx4 = 2− t ≥ 0.

Therefore, xxx3 enters the basis and xxx4 leaves the basis.

New simplex tableau

xxx1 = 3 − xxx4

xxx2 = 2 − xxx5

xxx3 = 2 − xxx4 + xxx5

z = 5 − xxx4 − xxx5
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Example: Optimal solution

Simplex tableau

xxx1 = 3 − xxx4

xxx2 = 2 − xxx5

xxx3 = 2 − xxx4 + xxx5

z = 5 − xxx4 − xxx5

No other pivot
Basis B = {1, 2, 3} with a basis feasible solution (3, 2, 2, 0, 0).

This vertex has two incident edges but no one increases the objective function.

We have an optimal solution.

Why this is an optimal solution?

Consider an arbitrary feasible solution ỹyy .

The value of objective function is z̃ = 5− ỹyy4 − ỹyy5.

Since ỹyy4, ỹyy5 ≥ 0, the objective value is z̃ = 5− ỹyy4 − ỹyy5 ≤ 5 = z.
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Example: Unboundedness

Canonical form

Maximize xxx1

subject to xxx1 − xxx2 ≤ 1
−xxx1 + xxx2 ≤ 2

xxx1,xxx2 ≥ 0

Equation form

Maximize xxx1

subject to xxx1 − xxx2 + xxx3 = 1
−xxx1 + xxx2 + xxx4 = 2

xxx1,xxx2,xxx3,xxx4 ≥ 0

Initial simplex tableau

xxx3 = 1 − xxx1 + xxx2

xxx4 = 2 + xxx1 − xxx2

z = xxx1
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Example: Unboundedness

Simplex tableau

xxx3 = 1 − xxx1 + xxx2

xxx4 = 2 + xxx1 − xxx2

z = xxx1

First pivot
Basis B = {3, 4} with a basis feasible solution (0, 0, 1, 2).

This vertex has two incident edges but only one increases the objective function.

The edge with increasing objective function is (t , 0, 1− t , 2 + t).

Feasible solutions for xxx3 = 1− t ≥ 0 and xxx4 = 2 + t ≥ 0.

Therefore, xxx1 enters the basis and xxx3 leaves the basis.

Simplex tableau

xxx1 = 1 + xxx2 − xxx3

xxx4 = 3 − xxx3

z = 1 + xxx2 − xxx3
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Example: Unboundedness

Simplex tableau

xxx1 = 1 + xxx2 − xxx3

xxx4 = 3 − xxx3

z = 1 + xxx2 − xxx3

Unboundedness
Basis B = {1, 4} with a basis feasible solution (1, 0, 0, 3).

This vertex has two incident edges but only one increases the objective function.

The edge with increasing objective function is (1 + t , t , 0, 3).

Every point (1 + t , t , 0, 3) for t ≥ 0 is feasible.

The value of the objective function is 1 + t .

Therefore, this problem is unbounded.
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Example: Degeneracy

Canonical form

Maximize xxx2

subject to −xxx1 + xxx2 ≤ 0
xxx1 ≤ 2

xxx1,xxx2 ≥ 0

Convert to the equation form by adding
slack variables xxx3 and xxx4.

Initial simplex tableau

xxx3 = xxx1 − xxx2

xxx4 = 2 − xxx1

z = xxx2

Basis feasible solution (0, 0, 0, 2) with
the basis {3, 4}.

Same solution with different basis

xxx2 = xxx1 − xxx3

xxx4 = 2 − xxx1

z = xxx1 − xxx3

Basis feasible solution (0, 0, 0, 2) with
the basis {2, 4}.

Optimal simplex tableau

xxx1 = 2 − xxx4

xxx2 = 2 − xxx3 − xxx4

z = 2 − xxx3 − xxx4

Optimal solution (2, 2, 0, 0) with the
basis {1, 2}.
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Simplex tableau in general

Definition
A simplex tableau determined by a feasible basis B is a system of m + 1 linear
equations in variables xxx1, . . . ,xxxn, and z that has the same set of solutions as the
system Axxx = bbb, z = cccTxxx , and in matrix notation looks as follows:

xxxB = ppp + QxxxN

z = z0 + rrr TxxxN

where xxxB is the vector of the basis variables, xxxN is the vector on non-basis variables,
ppp ∈ Rm, rrr ∈ Rn−m, Q is an m × (n −m) matrix, and z0 ∈ R.

Example

xxx3 = 5 + xxx1 − xxx2

xxx4 = 2 − xxx1

z = 3 + xxx1 + 2xxx2

Q =

(
1 −1
−1 0

)
xxxB =

(
xxx3

xxx4

)
, xxxN =

(
xxx1

xxx2

)
, ppp =

(
5
2

)
z0 = 3, rrr T = (1, 2)
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Simplex tableau in general

Definition
A simplex tableau determined by a feasible basis B is a system of m + 1 linear
equations in variables xxx1, . . . ,xxxn, and z that has the same set of solutions as the
system Axxx = bbb, z = cccTxxx , and in matrix notation looks as follows:

xxxB = ppp + QxxxN

z = z0 + rrr TxxxN

where xxxB is the vector of the basis variables, xxxN is the vector on non-basis variables,
ppp ∈ Rm, rrr ∈ Rn−m, Q is an m × (n −m) matrix, and z0 ∈ R.

Observation
For each basis B there exists exactly one simplex tableau, and it is given by

Q = −A−1
B AN

ppp = A−1
B bbb

z0 = cccT
BA−1

B bbb

rrr = cccN − (cccT
BA−1

B AN)
T

1
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1 Since ABxxxB + ANxxxN = bbb and AB is a regular matrix,
it follows that xxxB = A−1

B bbb − A−1
B ANxxxN

where A−1
B bbb = ppp and A−1

B AN = Q.
The objective function is cccT

BxxxB + cccT
NxxxN = cccT

BA−1
B bbb − (cccT

BA−1
B AN + cccT

N )xxxN ,
where cccT

BA−1
B bbb = z0 and cccT

BA−1
B AN + cccT

N = rT.
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Properties of a simplex tableau

Simplex tableau in general

xxxB = ppp + QxxxN

z = z0 + rrr TxxxN

Observation
Basis B is feasible if and only if ppp ≥ 000.

Observation
If rrr ≤ 0, then the solution corresponding to a basis B is optimal.

Idea of the pivot step
Choose v ∈ N. Which is the last feasible point of the half-line xxx(t) for t ≥ 0 where

xxxv (t) = t

xxxN\{v}(t) = 000

xxxB(t) = ppp + Q?,v t ?

Observation
If there exists a non-basis variable xxxv such that rv > 0 and Q?,v ≥ 0, then the problem
is unbounded.

Jirka Fink Optimization methods 56



Pivot step

Simplex tableau in general

xxxB = ppp + QxxxN

z = z0 + rrr TxxxN

Find a pivot
If rrr ≤ 000, then we have an optimal solution.

Otherwise, choose an arbitrary entering variable xxxv such that rrr v > 0.

If Q?,v ≥ 000, then the problem is also unbounded.

Otherwise, find a leaving variable xxxu which limits the increment of the entering
variable most strictly, i.e. Qu,v < 0 and − pppu

Qu,v
is minimal.
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Pivot rules

Pivot rules
Largest coefficient Choose an improving variable with the largest coefficient.

Largest increase Choose an improving variable that leads to the largest absolute
improvement in z, e.i. cccT(xxxnew − xxxold ) is maximal.

Steepest edge Choose an improving variable whose entering into the basis moves the
current basic feasible solution in a direction closest to the direction of
the vector c, i.e.

cccT(xxxnew − xxxold )

||xxxnew − xxxold ||

Bland’s rule Choose an improving variable with the smallest index, and if there are
several possibilities of the leaving variable, also take the one with the
smallest index.

Random edge Select the entering variable uniformly at random among all improving
variables.
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Pivot step

Simplex tableau in general

xxxB = ppp + QxxxN

z = z0 + rrr TxxxN

Gaussian elimination
New basis variables are (B \ {u}) ∪ {v} and new non-basis variables are
(N \ {v}) ∪ {u}
Row xxxu = pppu + Qu,vxxxv +

∑
j∈N\{v}Qu,jxxx j is replaced by

row xxxv =
pppu
−Qu,v

+ 1
Qu,v

xxxu +
∑

j∈N\{v}
Qu,j
−Qu,v

xxx j .

Rows xxx i = pppi + Qi,vxxxv +
∑

j∈N\{v}Qi,jxxx j for i ∈ B \ {u} are replaced by

rows xxx i = (pppi +
Qi,v
−Qu,v

pppu) +
Qi,v
Qu,v

xxxu +
∑

j∈N\{v}(Qi,j +
Qu,j Qi,v
−Qu,v

)xxx j .

Objective function z = z0 + rrr vxxxv +
∑

j∈N\{v} rrr jxxx j is replaced by

objective function z = (z0 +
pppu
−Qu,v

) + rrrv
−Qu,v

xxxu +
∑

j∈N\{v}(rrr j +
rrrv Qi,v
−Qu,v

)xxx j .

Observation
Pivot step does not change the set of all feasible solutions.
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Bland’s rule

Simplex tableau in general

xxxB = ppp + QxxxN

z = z0 + rrr TxxxN

Observation

Let B is a basis with the corresponding solution xxx ′ and let B̄ a new basis with the
corresponding solution x̄xx after a single pivot step. Then, xxx ′ = x̄xx or cccTxxx ′ < cccTx̄xx . 1

Observation
If the simplex method loops endlessly, then basis occuring in the loop correspond to
the same vertex. 2

Theorem

The simplex method with Bland’s pivot rule is always finite. 3
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1 Consider the half-line xxx(t) providing the pivot step and let
t̄ = max {t ≥ 0; xxx(t) ≥ 0}. Clearly, cccTx̄xx = xxx (̄t). If t̄ = 0, then x̄xx = xxx(0) = xxx ′. If
t̄ > 0, then cccTx̄xx = cccTxxx (̄t) = z0 + rrr v t̄ > z0 = cccTxxx ′ since rrr t > 0.

2 Consider that the simplex method iteraters over basis B(1), . . . ,B(k),B(k+1) = B(1)

with the corresponding solutions xxx (1), . . . ,xxx (k),xxx (k+1) = xxx (1). By the previous
observation holds that cccTxxx (1) ≤ cccTxxx (2) ≤ · · · ≤ cccTxxx (k) ≤ cccTxxx (k+1) = cccTxxx (1). Hence,
cccTxxx (1) = · · · = cccTxxx (k+1) and the previous observation implies that
xxx (1) = · · · = xxx (k+1).

3 For the sake of contradiction, we assume that the simplex method with Bland’s
pivot rule loops endlessly. Consider all basis in the loop. Let F be the set of all
entering variables and let xxxv ∈ F be the variable with largest index. Let B be a
basis in the loop just before xxxv enters. Note that variables of B \ F and N \ B are
always basis and non-basis variables during the loop, respectively. Consider the
following auxiliary problem.

Maximize cccTxxx
subject to Axxx = bbb

xxxF\{v} ≥ 000
xxxv ≤ 0

xxxN\F = 000
xxxB\F ∈ R|B\F |

(?)

We prove that (?) has an optimal solution and it is also unbounded which is a
contradiction.
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rrr v > 0 since xxxv is the entering variable
rrr i ≤ 0 for every i ∈ (F ∩ N) \ {v} since xxxv is the improving variable with the smallest
index (Bland’s rule)
For every solution xxx satisfying (?) holds that
cccTxxx = z0 + rrrTxxxN = z0 + rrrT

vxxxv + rrrT
(F∩N)\{v}xxx (F∩N)\{v} + rrrT

N\FxxxN\F ≤ z0.
Hence, the solution corresponding to the basis B is an optimal solution to (?).

Now, we prove that (?) is unbounded.
Let B be a basis in the loop just before xxxv leaves and let Q′, ppp′ and rrr ′ be the parameter
of the simplex tableau corresponding to B′.
Let xxxu be the entering variable. Hence, rrr ′u > 0.
Q′v,u < 0 since v is the leaving variable.
From Bland’s rule it follows that Q′i,u ≥ 0 for every i ∈ (F ∩ B′) \ {v}
ppp′F∩B′ = 000 since degenerated basis variables are zero
Consider the half-line xxx(t) for t ≥ 0 where xxxu(t) = t and xxxN′\{v}(t) = 000 and
xxxB′ (t) = ppp′ + Q′?,v t .
xxx (F∩N′)\{u}(t) = 000 since non-basis variables remains zero
xxx i (t) = ppp′i + Q′i,u t ≥ 0 for every i ∈ (F ∩ B′) \ {v}
Hence, xxxF\{v}(t) ≥ 000
xxxv (t) = ppp′v + Q′v,u t ≤ 0
xxxN′\F (t) = 000 since non-basis variables remains zero
Hence, xxx(t) satisfies (?) for every t ≥ 0
rrr ′u > 0 since xxxu is the entering variable
cccTxxx(t) = z′0 + rrr ′u t →∞ for t →∞
Hence, (?) is unbounded.
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Initial feasible basis

Linear programming problem in the equation form

Maximize cccTxxx subject to Axxx = bbb and xxx ≥ 0.

Assume that bbb ≥ 000 1

Auxiliary problem

We add auxiliary variables yyy ∈ Rm to obtain the auxiliary problem
maximize −yyy1 − · · · − yyym subject to Axxx + Iyyy = bbb a xxx ,yyy ≥ 000.

Observation
Initial feasible basis for the auxiliary problem is B = {yyy1, . . . ,yyym} with the initial tableau

yyy = bbb − Axxx
z = −111Tbbb + (111TA)xxx

Observation
The following statements are equivalent

1 The original problem max
{
cccTxxx ; Axxx = bbb, xxx ≥ 0

}
has a feasible solution.

2 Optimal value of the objective function of the auxiliary problem is 0.
3 Auxiliary problem has a feasible solution satisfying yyy = 000.
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1 We multiply every equation with negative right hand side by −1.
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Duality of linear programming: Example

Find an upper bound for the following problem

Maximize 2xxx1 + 3xxx2

subject to 4xxx1 + 8xxx2 ≤ 12
2xxx1 + xxx2 ≤ 3
3xxx1 + 2xxx2 ≤ 4

xxx1,xxx2 ≥ 0

Simple estimates

2xxx1 + 3xxx2 ≤ 4xxx1 + 8xxx2 ≤ 12 1

2xxx1 + 3xxx2 ≤ 1
2 (4xxx1 + 8xxx2) ≤ 6 2

2xxx1 + 3xxx2 = 1
3 (4xxx1 + 8xxx2 + 2xxx1 + xxx2) ≤ 5 3

What is the best combination of conditions?
Every non-negative linear combination of inequalities which gives an inequality
ddd1xxx1 + ddd2xxx2 ≤ h with d1 ≥ 2 and d2 ≥ 3 provides the upper bound
2xxx1 + 3xxx2 ≤ ddd1xxx1 + ddd2xxx2 ≤ h.
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1 The first condition
2 A half of the first condition
3 A third of the sum of the first and the second conditions
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Duality of linear programming: Example

Consider a non-negative combination yyy of inequalities

Maximize 2xxx1 + 3xxx2

subject to 4xxx1 + 8xxx2 ≤ 12 / · yyy1
2xxx1 + xxx2 ≤ 3 / · yyy2
3xxx1 + 2xxx2 ≤ 4 / · yyy3

xxx1,xxx2 ≥ 0

Observations
Every feasible solution xxx and non-negative combination yyy satisfies
(4yyy1 + 2yyy2 + 3yyy3)xxx1 + (8yyy1 + yyy2 + 2yyy3)xxx2 ≤ 12yyy1 + 3yyy2 + 4yyy3.

If 4yyy1 + 2yyy2 + 3yyy3 ≥ 2 and 8yyy1 + yyy2 + 2yyy3 ≥ 3,
then 12yyy1 + 2yyy2 + 4yyy3 is an upper for the objective function.

Dual program 1

Minimize 12yyy1 + 2yyy2 + 4yyy3
subject to 4yyy1 + 2yyy2 + 3yyy3 ≥ 2

8yyy1 + yyy2 + 2yyy3 ≥ 3
yyy1,yyy2,yyy3 ≥ 0

Jirka Fink Optimization methods 64



1 The primal optimal solution is xxxT = ( 1
2 ,

5
4 ) and the dual solution is yyyT = ( 5

16 , 0,
1
4 ),

both with the same objective value 4.75.
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Duality of linear programming: General

Primal linear program

Maximize cccTxxx subject to Axxx ≤ bbb and xxx ≥ 000

Dual linear program

Minimize bbbTyyy subject to ATyyy ≥ ccc and yyy ≥ 000

Weak duality theorem

For every primal feasible solution xxx and dual feasible solution yyy hold cccTxxx ≤ bbbTyyy .

Corollary
If one program is unbounded, then the other one is infeasible.

Duality theorem
Exactly one of the following possibilities occurs

1 Neither primal nor dual has a feasible solution
2 Primal is unbounded and dual is infeasible
3 Primal is infeasible and dual is unbounded
4 There are feasible solutions xxx and yyy such that cccTxxx = bbbTyyy

Jirka Fink Optimization methods 65



Dualization

Every linear programming problem has its dual, e.g.

Maximize cccTxxx subject to Axxx ≥ bbb and xxx ≥ 000 — Primal program

Maximize cccTxxx subject to −Axxx ≤ −bbb and xxx ≥ 000 — Equivalent formulation

Minimize −bbbTyyy subject to −ATyyy ≥ ccc and yyy ≥ 000 — Dual program

Minimize bbbTyyy subject to ATyyy ≥ ccc and yyy ≤ 000 — Simplified formulation

A dual of a dual problem is the (original) primal problem

Minimize bbbTyyy subject to ATyyy ≥ ccc and yyy ≥ 000 — Dual program

-Maximize −bbbTyyy subject to ATyyy ≥ ccc and yyy ≥ 000 — Equivalent formulation

-Minimize cccTxxx subject to Axxx ≥ −bbb and xxx ≤ 000 — Dual of the dual program

-Minimize −cccTxxx subject to −Axxx ≥ −bbb and xxx ≥ 000 — Simplified formulation

Maximize cccTxxx subject to Axxx ≤ bbb and xxx ≥ 000 — The original primal program
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Dualization: General rules

Primal linear program Dual linear program

Variables xxx1, . . . ,xxxn yyy1, . . . ,yyym

Matrix A AT

Right-hand side bbb ccc

Objective function maxcccTxxx minbbbTyyy

Constraints i-the constraint has ≤ yyy i ≥ 0
i-the constraint has ≥ yyy i ≤ 0
i-the constraint has = yyy i ∈ R

xxx j ≥ 0 j-th constraint has ≥
xxx j ≤ 0 j-th constraint has ≤
xxx j ∈ R j-th constraint has =
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Linear programming: Feasibility versus optimality

Feasibility versus optimality
Finding a feasible solution of a linear program is computationally as difficult as finding
an optimal solution.

Using duality
The optimal solutions of linear programs

Primal: Maximize cccTxxx subject to Axxx ≤ bbb and xxx ≥ 000

Dual: Minimize bbbTyyy subject to ATyyy ≥ ccc and yyy ≥ 000

are exactly feasible solutions satisfying

Axxx ≤ bbb
ATyyy ≥ ccc
cccTxxx ≥ bbbTyyy
xxx ,yyy ≥ 000

Jirka Fink Optimization methods 68



Complementary slackness

Theorem
Feasible solutions xxx and yyy of linear programs

Primal: Maximize cccTxxx subject to Axxx ≤ bbb and xxx ≥ 000

Dual: Minimize bbbTyyy subject to ATyyy ≥ ccc and yyy ≥ 000

are optimal if and only if

xxx i = 0 or AT
i,?yyy = ccc i for every i = 1, . . . , n and

yyy j = 0 or Aj,?xxx = bbbj for every j = 1, . . . ,m.

Proof

cccTxxx =
n∑

i=1

ccc ixxx i ≤
n∑

i=1

(yyyTA?,i )xxx i = yyyTAxxx =
m∑

j=1

yyy j (Aj,?xxx) ≤
m∑

j=1

yyy jbbbj = bbbTyyy
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Proof of duality using simplex method with Bland’s rule

Notation

Primal: Maximize cccTxxx subject to Axxx ≤ bbb and xxx ≥ 000

Primal with slack variables: Maximize c̄ccTx̄xx subject to Āx̄xx = bbb and x̄xx ≥ 000 1

Dual: Minimize bbbTyyy subject to ATyyy ≥ ccc and yyy ≥ 000

Simplex tableau

x̄xxB = ppp + Qx̄xxN

z = z0 + rrr Tx̄xxN

Simplex tableau is unique for every basis B

Q = −Ā−1
B ĀN

ppp = Ā−1
B bbb

z0 = c̄ccT
BĀ−1

B bbb

rrr = c̄ccN − (c̄ccT
BĀ−1

B ĀN)
T

Lemma

If B is a basis with an optimal solution x̄xx? of the primal problem, then yyy? = (c̄ccTĀ−1
B )

T
is

an optimal solution of the dual problem and cccTxxx? = bbbTyyy?. 2
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1 x̄xx is obtained from xxx by adding slack variables. So, Ā = (A|I) and c̄ccT = (cccT,000).
2 The primal optimal solution is x̄xx?B = Ā−1

B bbb and x̄xxN = 000
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Proof of duality using simplex method with Bland’s rule

Lemma

If B is a basis with an optimal solution x̄xx? of the primal problem, then yyy? = (c̄ccTĀ−1
B )

T
is

an optimal solution of the dual problem and cccTxxx? = bbbTyyy?.

Duality theorem (shorted version)
If the primal problem is feasible and bounded, the dual problem has an optimal solution
with the same optimum value as the primal.

Corollary of the weak duality theorem
If one program is unbounded, then the other one is infeasible.

Duality theorem (longer version)
Exactly one of the following possibilities occurs

1 Neither primal nor dual has a feasible solution
2 Primal is unbounded and dual is infeasible
3 Primal is infeasible and dual is unbounded
4 There are feasible solutions xxx and yyy such that cccTxxx = bbbTyyy
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Fourier–Motzkin elimination: Example

Goal: Find a feasible solution

2x − 5y + 4z ≤ 10
3x − 6y + 3z ≤ 9
5x + 10y − z ≤ 15
−x + 5y − 2z ≤ −7
−3x + 2y + 6z ≤ 12

Express the variable x in each condition

x ≤ 5 + 5
2 y − 2z

x ≤ 3 + 2y − z
x ≤ 3 − 2y + 1

5 z
x ≥ 7 + 5y − 2z
x ≥ −4 + 2

3 y + 2z

Eliminate the variable x
The original system has a feasible solution if and only if there exist y and z satisfying

max
{

7 + 5y − 2z,−4 +
2
3

y + 2z
}
≤ min

{
5 +

5
2

y − 2z, 3 + 2y − z, 3− 2y +
1
5

z
}
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Fourier–Motzkin elimination: Example

Rewrite into a system of inequalities
Real numbers y and z satisfy
max

{
7 + 5y − 2z,−4 + 2

3 y + 2z
}
≤ min

{
5 + 5

2 y − 2z, 3 + 2y − z, 3− 2y + 1
5 z
}

if
and only they satisfy

7 + 5y − 2z ≤ 5 + 5
2 y − 2z

7 + 5y − 2z ≤ 3 + 2y − z
7 + 5y − 2z ≤ 3 − 2y + 1

5 z
−4 + 2

3 y + 2z ≤ 5 + 5
2 y − 2z

−4 + 2
3 y + 2z ≤ 3 + 2y − z

−4 + 2
3 y + 2z ≤ 3 − 2y + 1

5 z

Overview
Eliminate the variable y , find a feasible evaluation of z a and compute y a x .

In every step, we eliminate one variable; however, the number of conditions may
increase quadratically.

If we start with m conditions, then after n eliminations the number of conditions is
up to 4(m/4)2n

.
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Fourier–Motzkin elimination: In general

Observation
Let Axxx ≤ bbb be a system with n ≥ 1 variables and m inequalities. There is a system
A′xxx ′ ≤ bbb′ with n − 1 variables and at most max

{
m,m2/4

}
inequalities, with the

following properties:
1 Axxx ≤ bbb has a solution if and only if A′xxx ′ ≤ bbb′ has a solution, and
2 each inequality of A′xxx ′ ≤ bbb′ is a positive linear combination of some inequalities

from Axxx ≤ bbb.

Proof
1 WLOG: Ai,1 ∈ {−1, 0, 1} for all i = 1, . . . ,m
2 Let C = {i ; Ai,1 = 1}, F = {i ; Ai,1 = −1} and L = {i ; Ai,1 = 0}
3 Let A′xxx ′ ≤ bbb′ be the system of n − 1 variables and |C| · |F |+ |L| inequalities

j ∈ C, k ∈ F : (Aj,? + Ak,?)xxx ≤ bbbj + bbbk (1)
l ∈ L : Al,?xxx ≤ bbbl (2)

4 Assuming A′xxx ′ ≤ bbb′ has a solution xxx ′, we find a solution xxx of Axxx ≤ bbb:
(1) is equivalent to A′k,?xxx

′ − bbbk ≤ bbbj − A′j,?xxx
′ for all j ∈ C, k ∈ F ,

which is equivalent to maxk∈F

{
A′k,?xxx

′ − bbbk

}
≤ minj∈C

{
bbbj − A′j,?xxx

′
}

Choose xxx1 between these bounds and xxx = (xxx1,xxx ′) satisfies Axxx ≤ bbb
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Farkas lemma

Proposition (Farkas lemma, 3rd version)

Let A ∈ Rm×n and bbb ∈ Rm. Then, the system Axxx ≤ bbb has a solution xxx ∈ Rn if and only if
every non-negative yyy ∈ Rm with yyyTA = 000T satisfies yyyTbbb ≥ 0.

Proof (overview)

⇒ If xxx satisfies Axxx ≤ bbb and yyy ≥ 000 satisfies yyyTA = 000T, then yyyTbbb ≥ yyyTAxxx ≥ 000Txxx = 000

⇐ If Axxx ≤ bbb has no solution, the find yyy ≥ 000 satisfying yyyTA = 000T and yyyTbbb < 0 by the
induction on n

n = 0 The system Axxx ≤ bbb equals to 000 ≤ bbb which is infeasible, so bi < 0 for some i
Choose yyy = ei (the i-th unit vector)

n > 0 Using Fourier–Motzkin elimination we obtain an infeasible system A′xxx ′ ≤ bbb′

There exists a non-negative matrix M such that (000|A′) = MA and bbb′ = Mbbb
By induction, there exists yyy ′ ≥ 0, yyy ′TA′ = 000T, yyy ′Tbbb′ < 0
We verify that yyy = MTyyy ′ satisfies all requirements of the induction
yyy = MTyyy ′ ≥ 000
yyyTA = (MTyyy ′)TA = yyy ′TMA = yyy ′T(000|A′) = 000T

yyyTbbb = (MTyyy ′)Tbbb = yyy ′TMbbb = yyy ′Tbbb′ < 000T
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Farkas lemma

Proposition (Farkas lemma)

Let A ∈ Rm×n and bbb ∈ Rm. The following statements hold.
1 The system Axxx = bbb has a non-negative solution xxx ∈ Rn if and only if every yyy ∈ Rm

with yyyTA ≥ 000T satisfies yyyTbbb ≥ 0.
2 The system Axxx ≤ bbb has a non-negative solution xxx ∈ Rn if and only if every

non-negative yyy ∈ Rm with yyyTA ≥ 000T satisfies yyyTbbb ≥ 0.
3 The system Axxx ≤ bbb has a solution xxx ∈ Rn if and only if every non-negative yyy ∈ Rm

with yyyTA = 000T satisfies yyyTbbb ≥ 0.

Proof of the equivalence of variants of Farkas lemma
Exercise :)
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Farkas lemma

Definition
A cone generated by vectors aaa1, . . . ,aaan ∈ Rm is the set of all non-negative
combinations of aaa1, . . . ,aaan, i.e.

{∑n
i=1 αiaaai ; α1, . . . , αn ≥ 0

}
.

Proposition (Farkas lemma geometrically)

Let aaa1, . . . ,aaan,bbb ∈ Rm. Then exactly one of the following two possibilities occurs:
1 The point bbb lies in the cone generated by aaa1, . . . ,aaan.
2 There exists a hyperplane h =

{
xxx ∈ Rm; yyyTxxx = 0

}
containing 000 for some yyy ∈ Rm

separating aaa1, . . . ,aaan and bbb, i.e. yyyTaaai ≥ 0 for all i = 1, . . . , n and yyyTbbb < 0.

Proposition (Farkas lemma)

Let A ∈ Rm×n and bbb ∈ Rm. Then exactly one of the following two possibilities occurs:
1 There exists a vector xxx ∈ Rn satisfying Axxx = bbb and xxx ≥ 000.
2 There exists a vector yyy ∈ Rm satisfying yyyTA ≥ 000 and yyyTb < 000.
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Hyperplane separation theorem

Theorem (strict version)

Let C,D ⊆ Rn be non-empty, closed, convex and disjoint sets and C be bounded.
Then, there exists a hyperplane aaaTxxx = b which strictly separates C and D;
that is C ⊆

{
xxx ;aaaTxxx < b

}
and D ⊆

{
xxx ;aaaTxxx > b

}
.

Example

aaaTxxx > b

aaaTxxx < b

D

C
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Mathematical analysis

Definition
A set S ⊆ Rn is closed if S contains the limit of every converging sequence of
points of S .

A set S ⊆ Rn is bounded if max {||xxx ||; xxx ∈ S} < b for some b ∈ R.

A set S ⊆ Rn is compact if every sequence of points of S contains a converging
subsequence with limit in S.

Theorem
A set S ⊆ Rn is compact if and only if S is closed and bounded.

Theorem
If f : S → R is a continuous function on a compact set S ⊆ Rn, then S contains a point
xxx maximizing f over S; that is, f (xxx) ≥ f (yyy) for every yyy ∈ S.

Infimum and supremum
Infimum of a set S ⊆ R is inf(S) = max {b ∈ R; b ≤ x ∀x ∈ S}.
Supremum of a set S ⊆ R is sup(S) = min {b ∈ R; b ≥ x ∀x ∈ S}.
inf(∅) =∞ and sup(∅) = −∞
inf(S) = −∞ if S has no lower bound
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Hyperplane separation theorem

Theorem (strict version)

Let C,D ⊆ Rn be non-empty, closed, convex and disjoint sets and C be bounded.
Then, there exists a hyperplane aaaTxxx = b which strictly separates C and D;
that is C ⊆

{
xxx ;aaaTxxx < b

}
and D ⊆

{
xxx ;aaaTxxx > b

}
.

Proof (overview)
1 Find ccc ∈ C and ddd ∈ D with minimal distance ||ddd − ccc||.

1 Let m = inf {||ddd − ccc||; ccc ∈ C,ddd ∈ D}.
2 For every n ∈ N there exists cccn ∈ C and dddn ∈ D such that ||dddn − cccn|| ≤ m + 1

n .
3 Since C is compact, there exists a subsequence

{
ccckn

}∞
n=1 converging to ccc ∈ C.

4 There exists z ∈ R such that for every n ∈ N the distance ||dddn − ccc|| is at most z. 1

5 Since the set D ∩ {xxx ∈ Rn; ||xxx − ccc|| ≤ z} is compact, the sequence
{

dddkn

}∞
n=1 has a

subsequence
{

ddd ln
}∞

n=1 converging to ddd ∈ D.
6 Observe that the distance ||ddd − ccc|| is m. 2

2 The required hyperplane is aaaTxxx = b where aaa = ddd − ccc and b = aaaTccc+aaaTddd
2

1 We prove that aaaTccc′ ≤ aaaTccc < b < aaaTddd ≤ aaaTddd ′ for every ccc′ ∈ C and ddd ′ ∈ D. 3

2 Since C is convex, y = ccc + α(ccc′ − ccc) ∈ C for every 0 ≤ α ≤ 1.
3 From the minimality of the distance ||ddd − ccc|| it follows that ||ddd − y ||2 ≥ ||ddd − ccc||2.
4 Using an elementary operation, observe that α2 ||ccc

′ − ccc||2 + aaaTccc ≥ aaaTccc′ 4

5 which holds for arbitrarily small α > 0, it follows that aaaTccc ≥ aaaTccc′ holds.
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1 ||dddn − ccc|| ≤ ||dddn − cccn||+ ||cccn − ccc|| ≤ m + 1 + max {||c′ − c′′||; c′, c′′ ∈ C} = z
2 ||ddd − ccc|| ≤ ||ddd − ddd ln ||+ ||ddd ln − ccc ln ||+ ||ccc ln − ccc|| → m
3 The inner two inequalities are obvious. We only prove the first inequality since the

last one is analogous.
4

||ddd − y ||2 ≥ ||ddd − ccc||2

(ddd − ccc − α(ccc′ − ccc))
T
(ddd − ccc − α(ccc′ − ccc)) ≥ (ddd − ccc)T(ddd − ccc)

α2(ccc′ − ccc)
T
(ccc′ − ccc)− 2α(ddd − ccc)T(ccc′ − ccc) ≥ 0

α

2
||ccc′ − ccc||2 + aaaTccc ≥ aaaTccc′
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Relations between Farkas lemma, duality and linear programming

Farkas lemma
The system Axxx ≤ bbb has a solution xxx ∈ Rn if and only if every non-negative yyy ∈ Rm with
yyyTA = 000T satisfies yyyTbbb ≥ 0.

Feasibility of a linear programming problem

Problem max
{
cccTxxx ; Axxx ≤ bbb

}
is infeasible if and only if there exists a non-negative

combination yyy of inequalities Axxx ≤ bbb such that yyyTA = 000 and yyyTbbb < 0.

Boundedness of a linear programming problem

If the problem max
{
cccTxxx ; Axxx ≤ bbb

}
is bounded and feasible, then ccc is a

non-negative combination yyy of rows of A, i.e. cccT = yyyTA.

If ccc is a non-negative combination yyy of rows of A, then the problem
max

{
cccTxxx ; Axxx ≤ bbb

}
is bounded.

Farkas lemma also follows from duality

max
{
000Txxx ; Axxx ≤ bbb

}
= min

{
bbbTyyy ; ATyyy = 000, yyy ≥ 000

}
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Minimal defining system of a polyhedron

Definition

P =
{
xxx ∈ Rn; A′xxx = bbb′, A′′xxx ≤ bbb′′

}
is a minimal defining system of a polyherdon P if

no condition can be removed and

no inequality can be replaced by equality

without changing the polyhedron P.

Observation
Every polyhedron has a minimal defining system.

Lemma

Let P =
{
xxx ∈ Rn; A′xxx = bbb′, A′′xxx ≤ bbb′′

}
be a minimal defining system of a polyherdon

P. Let P′ =
{
xxx ∈ P; A′′i,?xxx = bbb′′i

}
for some row i of A′′xxx ≤ bbb′′. Then dim(P′) < dim(P).

1
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1 There exists x ∈ P \ P′. Observe that x is not an affine combination of P′. Hence,
dim(P′) + 1 = dim(P′ ∪ {x}) ≤ dim(P).
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Minkowski-Weyl

Theorem (Minkowski-Weyl)

A set S ⊆ Rn is a polytope if and only if there exists a finite set V ⊆ Rn such that
S = conv(V ).

Illustration

A1,?xxx ≤ bbb1

A2,?xxx ≤ bbb2

A3,?xxx ≤ bbb3

A4,?xxx ≤ bbb4

A5,?xxx ≤ bbb5

vvv1

vvv2

vvv3

vvv4

vvv5

{xxx ; Axxx ≤ bbb}
=

conv({vvv1, . . . ,vvv5})
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Minkowski-Weyl

Theorem (Minkowski-Weyl)

A set S ⊆ Rn is a polytope if and only if there exists a finite set V ⊆ Rn such that
S = conv(V ).

Proof of the implication⇒ (main steps) by induction on dim(S)

For dim(S) = 0 the size of S is 1 and the statement holds. Assume that dim(S) > 0.

1 Let S =
{
xxx ∈ Rn; A′xxx = bbb′, A′′xxx ≤ bbb′′

}
be a minimal defining system.

2 Let Si =
{
xxx ∈ S; A′′i,?xxx = bbb′′i

}
where i is a row of A′′xxx ≤ bbb′′.

3 Since dim(Si ) < dim(S), there exists a finite set Vi ⊆ Rn such that Si = conv(Vi ).
4 Let V =

⋃
i Vi . We prove that conv(V ) = S.

⊆ Follows from Vi ⊆ Si ⊆ S and convexity of S.
⊇ Let xxx ∈ S. Let L be a line containing xxx .

S ∩ L is a line segment with end-vertices uuu and vvv .
There exists i, j ∈ I such that A′′i,?uuu = bbb′′i and A′′j,?vvv = bbb′′j .
Since uuu ∈ Si and vvv ∈ Sj , points uuu and vvv are convex combinations of Si and Sj , resp.
Since xxx is a also a convex combination of uuu and vvv , we have xxx ∈ conv(S).
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Minkowski-Weyl

Theorem (Minkowski-Weyl)

A set S ⊆ Rn is a polytope if and only if there exists a finite set V ⊆ Rn such that
S = conv(V ).

Lemma

A condition αααTvvv ≤ β is satisfied by all points vvv ∈ V if and only if the condition is
satisfied by all points vvv ∈ conv(V ).

Corollary{(
ααα
β

)
; αααTvvv ≤ β ∀vvv ∈ V

}
=
{(

ααα
β

)
; αααTvvv ≤ β ∀vvv ∈ conv(V )

}

Lemma

Let C ⊆ Rn be a closed and convex set and let Q1 be the set of all
(
ααα
β

)
such that the

condition αααTvvv ≤ β is satisfied by all points vvv ∈ C. Let xxx ∈ Rn. Then, xxx ∈ C if and only
αααTxxx ≤ β for every

(
ααα
β

)
∈ Q1. 1

Jirka Fink Optimization methods 85



1 ⇒: Trivial
⇐: If {xxx} ∩ C = ∅, then by hyperplane separation theorem there exists a hyperplane

separating {xxx} and C: αααTxxx > β and αααTvvv < β for every vvv ∈ C. Hence,
(ααα
β

)
∈ Q1 but

αααTxxx ≤ β fails.
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Minkowski-Weyl

Theorem (Minkowski-Weyl)

A set S ⊆ Rn is a polytope if and only if there exists a finite set V ⊆ Rn such that
S = conv(V ).

Proof of the implication⇐ (main steps)

Let Q =
{(

ααα
β

)
; ααα ∈ Rn, β ∈ R,−111 ≤ ααα ≤ 1,−1 ≤ β ≤ 1,αααTvvv ≤ β ∀vvv ∈ V

}
.

Observe that αααTvvv ≤ β means the same as
( vvv
−1

)T(ααα
β

)
≤ 0.

Since Q is a polytope, there exists a finite set W ⊆ Rn+1 such that Q = conv(W ).

conv(V ) =
{

xxx ∈ Rn; αααTxxx ≤ β ∀
(
ααα
β

)
∈ W

}
since the following statements are

equivalent.
1 xxx ∈ conv(V )

2 αααTxxx ≤ β ∀
(
ααα
β

)
∈ Q1 where Q1 =

{(
ααα
β

)
; αααTvvv ≤ β ∀vvv ∈ conv(V )

}
3 αααTxxx ≤ β ∀

(
ααα
β

)
∈ Q2 where Q2 =

{(
ααα
β

)
; αααTvvv ≤ β ∀vvv ∈ V

}
4 αααTxxx ≤ β ∀

(
ααα
β

)
∈ Q

5 αααTxxx ≤ β ∀
(
ααα
β

)
∈ W
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(1)⇔ (2) Lemma with C = conv(V ).

(2)⇔ (3) By Corollary, Q1 = Q2.

(3)⇔ (4) ααα and β in every condition αααTvvv ≤ β can be scaled so that −111 ≤ ααα ≤ 1
and −1 ≤ β ≤ 1 and the condition describe the same half-space.

(4)⇔ (5) Lemma.
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Convex hull of vertices of a polytope

Theorem
Let P be a polytope and V its vertices. Then, xxx is a vertex of P if and only if
xxx /∈ conv(P \ {xxx}). Furthermore, P = conv(V ).

Proof
Let V0 be an inclusion minimal set such that P = conv(V0).

Let Ve = {xxx ∈ P; xxx /∈ conv(P \ {xxx})}.
We prove that V ⊆ Ve ⊆ V0 ⊆ V .

V ⊆ Ve: Let zzz ∈ V be a vertex.
There exists a supporting hyperplane cccTxxx = t such that P ∩

{
xxx ; cccTxxx = t

}
= {zzz}.

Since cccTxxx < t for all xxx ∈ P \ {zzz}, it follows that xxx ∈ Ve.

Ve ⊆ V0: Let zzz ∈ Ve.
Since conv(P \ {zzz}) 6= P, it follows that zzz ∈ V0.
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Convex hull of vertices of a polytope

Theorem
Let P be a polytope and V its vertices. Then, xxx is a vertex of P if and only if
xxx /∈ conv(P \ {xxx}). Furthermore, P = conv(V ).

Proof
Let V0 be an inclusion minimal set such that P = conv(V0). We prove that V0 ⊆ V .

1 Let zzz ∈ V0 and D = conv(V0 \ {zzz}).
2 Minkovsky-Weil’s theorem⇒ V0 is finite⇒ D is compact.
3 By the separation theorem we separate {zzz} and D: cccTxxx < r < cccTzzz for all xxx ∈ D.
4 Let t = cccTzzz. We prove that A =

{
xxx ; cccTxxx = t

}
is a supporting hyperplane of P.

5 Clearly, cccTxxx ≤ r for every x ∈ P and zzz ∈ A ∩ P.
6 For a sake of contradiction, let zzz′ ∈ A ∩ P and zzz 6= zzz′.
7 Let zzz′ = α0zzz + α1xxx1 + · · ·+ αkxxxk be a convex combination of V0.
8 From zzz 6= zzz′ it follows that α0 < 1 and WLOG α1 > 0.
9 It holds that α0cccTzzz = α0t and α1cccTxxx1 < α1t and αicccTxxx i ≤ αi t for all i = 1, . . . , k .

10 Hence, cccTzzz′ = α0cccTzzz + α1cccTxxx1 +
∑k

i=2 αicccTxxx i < α0t + α1t +
∑k

i=2 αi t = t .
11 This contradicts the assumption that zzz′ ∈ A.
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Example: Maximal weighted perfect matching in a graph (V ,E ,w)

Integer linear program

maxwwwTxxx subject to Axxx = 111 and xxx ∈ {0, 1} where A is the incidence matrix
Relaxed program: replace xxx ∈ {0, 1} by 000 ≤ xxx ≤ 111
Matching polytope P =

{
xxx ∈ RE ; Axxx = 111, 000 ≤ xxx ≤ 111

}

Bipartite graphs
If the graph is bipartite, then every vertex of P is a perfect matching.

Corollary
If the graph is bipartite, every optimal basis solution is a perfect matching.

Non-bipartite graph (example)

For the triangle, ( 1
2 ,

1
2 ,

1
2 ) is a vertex of P (and the only point of P).
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Integer linear programming

Integer linear programming

Integer linear programming problem is an optimization problem to find xxx ∈ Zn which
maximizes cccTxxx and satisfies Axxx ≤ bbb where A ∈ Rm×n and bbb ∈ Rm.

Mix integer linear programming
Some variables are integer and others are real.

Relaxed problem and solution
Given a (mix) integer linear programming problem, the corresponding relaxed
problem is the linear programming problem where all integral constraints xxx i ∈ Z
are relaxed; that is, replaced by xxx i ∈ R.

Relaxed solution is a feasible solution of the relaxed problem.

Optimal relaxed solution is the optimal feasible solution of the relaxed problem.

Observation
Let xxx? be an integral optimal solution and xxx r be a relaxed optimal solution. Then,
cccTxxx r ≥ cccTxxx?.
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Rational and integral polyhedrons

Definition: Rational polyhedron
A polyhedron P is called rational if it is defined by a rational linear system
P = {xxx ; Axxx ≤ bbb} where A ∈ Qm×n and bbb ∈ Qm. 1

Observation
Every vertex of a rational polyhedron in the canonical form P = {xxx ; Axxx = bbb,xxx ≥ 000} is
rational. 2

Definition: Integral polyhedron
A rational polyhedron is called integral if every non-empty face contains an integral
point.

Observation
Let P be a rational polyhedron which has a vertex. Then, P is integral if and only if
every vertex of P is integral. 3

Theorem
A rational polytope P is integral if and only if for all integral vector ccc the optimal value of
max

{
cccTxxx ; xxx ∈ P

}
is an integer.
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1 If P is a rational polyherdon, then there exists an integral linear system
P =

{
xxx ; A′xxx ≤ bbb′

}
where A′ ∈ Zm×n and bbb ∈ Zm since we can multiply every row

of Axxx ≤ bbb so that the resulting system consists of integers.
2 Every vertex of P is a basis feasible solution with a basis B and coordinates

xxxB = A−1
B bbb and xxx = 000. Since AB is regular and rational, the inverse matrix A−1

B is
also rational, so xxxB = A−1

B bbb is rational.
3 Since a vertex is an non-empty face, every vertex of an integral polyhedron must

be integral. Since P has a vertex, every face contains a vertex and this vertex
must be integral.
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Rational and integral polyhedrons

Theorem
A rational polytope P is integral if and only if for all integral vector ccc the optimal value of
max

{
cccTxxx ; xxx ∈ P

}
is an integer.

Proof

⇒ Every vertex of P is integral, so optimal values are integrals. 1

⇐ Let vvv be a vertex of P. We prove that vvv1 is an integer.
1 Let ccc be an integer vector such that vvv is the only optimal solution. 2

2 We can scale the vector ccc by a sufficiently large integer k so that vvv is also the optimal
vertex for objective vector (kccc + e1) where e1 = (1, 0, . . . , 0)T. 3

3 Hence, cccTvvv , (kccc + ei )
Tvvv and vvv1 = (kccc + ei )

Tvvv − kcccTvvv are integers.
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1 If a polytope is integral, then the face of all optimal solution contains an integral
point xxx?, so the dot product of xxx? and an integral vector ccc is an integer.

2 Assume that P = {xxx ; Axxx ≤ bbb} where A and bbb are integral. Let A′xxx = bbb′ be the
subsystem of Axxx ≤ bbb which vvv satisfies all inequalities in equations. We sum up all
equations A′xxx = bbb′ into cccxxx = d . We know that cccxxx = d is a supporting hyperplane
for vvv .

3 Choose a positive integer k to be at least max
{

uuu1−vvv1
cccTvvv−cccTuuu ; u vertex of P

}
.
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Total unimodularity

Questions
How to recognise whether a polytope P = {xxx ; Axxx ≤ bbb} is integral?

When P is integral for every integral vector bbb?

Proposition

Let A ∈ Rm×m be an integral and regular matrix. Then, A−1b is integral for every
integral vector bbb ∈ Rm if and only if det(A) ∈ {1,−1}.

Proof

⇐ Cramer’s rule: A−1
j,i = det B

det A where B is a matrix obtained from A by replacing the i-th
column by ej .
Hence, A−1 is integral, so A−1b is integral for every integral bbb

⇒ A−1
?,i = A−1ei is integral for every i = 1, . . . ,m

Since A and A−1 are integral, also det(A) and det(A−1) are both integers
From 1 = det(A) · det(A−1) it follows that det(A) = det(A−1) ∈ {1,−1}
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Unimodular matrix

Definition
A full row rank matrix A is unimodular if A is integral and each basis of A has
determinant ±1.

Theorem

Let A ∈ Rm×n be an integral full row rank matrix. Then, the polyhedron
P = {xxx ; Axxx = bbb,xxx ≥ 000} is integral for every integral vector bbb if and only if A is
unimodular.

Proof
⇐ Let bbb be an integral vector and let xxx ′ be a vertex of P

Columns of A corresponding to non-zero components of xxx ′ are linearly independent
and we extend these columns into a basis AB
Hence, xxx ′B = A−1

B bbb is integral and xxx ′N = 000

⇒ 1 We prove that A−1
B vvv is integral for every base B and integral vector vvv

2 Let yyy be integral vector such that yyy + A−1
B vvv ≥ 0

3 Let bbb = AB(yyy + A−1
B vvv) = AByyy + vvv which is integral

4 Let zzzB = yyy + B−1vvv and zzzN = 000
5 From Azzz = AB(yyy + B−1vvv) = bbb and zzz ≥ 000, it follows that zzz ∈ P and zzz is a vertex of P
6 Hence, A−1

B vvv = zzzB − yyy is integral
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Totally unimodular matrix

Definition
A matrix is totally unimodular if all of its square submatrices have determinant 0, 1 or
−1.

Exercise
Prove that every element of a totally unimodular matrix is 0, 1 or −1.
Find a matrix A ∈ {0, 1,−1}m×n which is not totally unimodular.

Exercise
Prove that A is totally unimodular if and only if (A|I) is unimodular.
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Totally unimodular matrix

Theorem: Hoffman-Kruskal

Let A ∈ Zm×n and P = {xxx ; Axxx ≤ bbb,xxx ≥ 000}. The polyhedron P is integral for every
integral bbb if and only if A is totally unimodular.

Proof
Adding slack variables, we observe that the following statements are equivalent.

1 {xxx ; Axxx ≤ bbb,xxx ≥ 000} is integral for every integral bbb
2 {xxx ; (A|I)zzz = bbb,zzz ≥ 000} is integral for every integral bbb
3 (A|I) is unimodular
4 A is totally unimodular
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Totally unimodular matrix: Application

Observation
Let A be a matrix of 0, 1 and −1 where every column has at most one +1 and at most
one −1. Then, A is totally unimodular.

Proof
By the induction on k prove that every k × k submatrix N has determinant 0, +1 or −1

k = 1 Trivial

k > 1 If N has a column with at most one non-zero element, then we
expand this column and use induction
If N has exactly one +1 and −1 in every column, then the sum of
all rows is 000, so N is singular

Corollary
The incidence matrix of an oriented graph is totally unimodular.

Observation: Other totally unimodular (TU) matrices

A is TU iff AT is TU iff (A|I) is TU iff (A|A) is TU iff (A| − A) is TU
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Network flow

Definition: Network flow

Let G = (V ,E) be an oriented graph with non-negative capacities of edges c ∈ RE . A
network flow in G is a vector f ∈ RE such that

Conservation:
∑

uv∈E fuv =
∑

vu∈E fvu for every vertex v ∈ V

Capacity: 0 ≤ f ≤ c

The network flow problem is the optimization problem of finding a flow f in G that
maximize fts on a given edge ts ∈ E .

Theorem
The polytope of network flow is integral for every integral c.

Proof
1 Let A be the incidence matrix of G
2 A is totally unimodular
3 (A| − A) and (A| − A|I) are totally unimodular

4

f ;

 A
−A

I

 f ≤

0
0
c

 , f ≥ 000

 is an integral polytope
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Duality of the network flow problem

Primal: Network flow
Maximize fff ts subject to Afff = 000, fff ≤ ccc and fff ≥ 000.

Primal dual

Minimize ccczzz subject to ATyyy + zzz ≥ ets (that is −yyyu + yyyv + zzzuv ≥ ets) and zzz ≥ 0. 1

Observation
Dual problem has an integral optimal solution.

Complementary slackness

fff uv = cccuv or zzzuv = 0 for every edge uv 2

fff uv = 0 or −yyyu + yyy v + zzzuv = 0 for every edge uv 6= ts

fff ts = 0 or −yyy t + yyy s + zzz ts = 1 3

Observation
Every feasible solution defines a cut where Z = {uv ∈ E ; zuv > 0} are cut edges and
U = {u ∈ V ; yyyu > yyy t} is partition of vertices. Moreover, the minimal cut equals the
maximal flow. 4
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1 Observe that if (yyy ,zzz) is a feasible solution to the dual problem, then (yyy + α,zzz) is a
feasible solution for every α ∈ R, so we can assume that yyy t = 1.

2 If cccts is sufficiently large, then fff ts < cccts in every feasible solution, so zzz ts = 0.
3 Since zzz ts = 0, we have yyy s ≥ yyy t + 1. If the graph has a non-trivial flow, then

vfts > 0, so yyy s = yyy t + 1 = 1.
4 For every edge uv with u /∈ U and v ∈ U, we have zzzuv ≥ yyyu − yyy v > 0, so uv ∈ Z .

Furthermore, if fff and (yyy ,zzz) are optimal solutions, then the complementarity
slackness implies that for every uv ∈ Z it holds that fff uv = cccuv and for every edge
uv with u ∈ U and v /∈ U it holds that −yyyu + yyy v + zzzuv > −yyy t + yyy t + 0 > 0, so the
complementary slackness implies that fff uv = 0.
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Gomory-Chvátal cutting plane: Example

Interger linear programming problem

Maximize xxx2
subject to 2xxx1 + 3xxx2 ≤ 27

2xxx1 − 2xxx2 ≤ 7
−2xxx1 − 6xxx2 ≤ −11
−6xxx1 + 8xxx2 ≤ 21
xxx1,xxx2 ∈ Z

Relaxed problem

Optimal relaxed solution is ( 9
2 , 6)

T.

Cutting plane 1

The last inequality −3xxx1 + 4xxx2 ≤ 21
2

Every feasible xxx ∈ Z2 satisfies −3xxx1 + 4xxx2 ≤ 10

Cutting plane 2

Cutting plane 1 −6xxx1 + 8xxx2 ≤ 20
The first inequality 6xxx1 + 9xxx2 ≤ 81
Sum 17xxx2 ≤ 101
Every feasible xxx ∈ Z2 satisfies xxx2 ≤ 5
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Gomory-Chvátal cutting plane proof

System of inequalities
Consider a system P = {xxx ; Axxx ≤ bbb} with n variables and m inequalities.

Definition: Gomory-Chvátal cutting plane

Consider a non-negative linear combination of inequalities yyy ∈ Rm

Let ccc = yyyTA and d = yyyTbbb

Every point xxx ∈ P satifies cccTxxx ≤ d

Furthermore, if ccc is integral, every integral point xxx satisfies cccTxxx ≤ bdc
The inequality cccTxxx ≤ bdc is called a Gomory-Chvátal cutting plane

Definition: Gomory-Chvátal cutting plane proof

A cutting plane proof of an inequality wwwTxxx ≤ t is a sequence of inequalities
aT

m+kxxx ≤ bm+k where k = 1, . . . ,M such that

for each k = 1, . . . ,M the inequality aT
m+kxxx ≤ bm+k is a cutting plane derived from

the system aT
i xxx ≤ bi for i = 1, . . . ,m + k − 1 and

wwwTxxx ≤ t is the last inequality aT
m+Mxxx ≤ bm+M .
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Gomory-Chvátal cutting plane: Theorems

Theorem: Existence of a cutting plane proof for every valid inequality

Let P = {xxx ; Axxx ≤ bbb} be a rational polytope and let wwwTxxx ≤ t be an inequality with wwwT

intergal satisfied by all integral vectors in P. Then there exists a cutting plane proof of
wwwTxxx ≤ t ′ from Axxx ≤ bbb for some t ′ ≤ t .

Theorem: Cutting plane proof for 000Txxx ≤ −1 in polytopes without integral point

Let P = {xxx ; Axxx ≤ bbb} be a rational polytope that contains no integral point. Then there
exists a cutting plane proof of 000Txxx ≤ −1 from Axxx ≤ bbb.
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Branch and bound

Branch
Consider a mix integer linear programming problem
max {xxx ∈ Rn; Axxx ≤ bbb, xxx i ∈ Z for all i ∈ I} where I is a set of integral variables.

Let xxx r be the optimal relaxed solution.

If xxx r
i ∈ Z for all i ∈ I, then xxx r is an optimal solution.

Otherwise, choose j ∈ I with xxx r
j /∈ Z and recursively solve two subproblems

max
{

xxx ∈ Rn; Axxx ≤ bbb, xxx j ≤
⌊
xxx r

j

⌋
, xxx i ∈ Z, i ∈ I

}
and

max
{

xxx ∈ Rn; Axxx ≤ bbb, xxx j ≥
⌈
xxx r

j

⌉
, xxx i ∈ Z, i ∈ I

}
.

The optimal solution of the original problem is the better one of subproblems.

Bound
Let xxx ′ be an integral feasible solution and xxx r be an optimal relaxed solution of a
subproblem. If cccTxxx ′ ≥ cccTxxx r , then the subproblem does not contain better integral
feasible solution than xxx ′.

Observation
If the polyhedron {xxx ∈ Rn; Axxx ≤ bbb} is bounded, then the Brand and bound algorithm
finds an optimal solution of the mix integer linear programming problem.
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Minimum vertex cover problem

Definition
A vertex cover in a graph G = (V ,E) is a set of vertices S such that every edge of E
has at least one end vertex in S. Finding a minimal-size vertex cover is the minimum
vertex cover problem.

Integer linear programming formulation

Minimize
∑

v∈V xxxv

subject to xxxu + xxxv ≥ 1 for all uv ∈ E
xxxv ∈ {0, 1} for all v ∈ V

Relaxed problem

Minimize
∑

v∈V xxxv

subject to xxxu + xxxv ≥ 1 for all uv ∈ E
0 ≤ xxxv ≤ 1 for all v ∈ V
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Approximation algorithm for vertex cover problem

Algorithm
Let xxx? the optimal relaxed solution

Let SLP =
{

v ∈ V ; xxx?v ≥ 1
2

}
Observation
SLP is a vertex cover.

Observation

Let SOPT be the minimal vertex cover. Then |SLP |
|SOPT |

≤ 2.

Proof
Since xxx? is the optimal relaxed solution,

∑
v∈V xxx?v ≤ |SOPT |

From the rounding rule, it follows that |SLP | ≤ 2
∑

v∈V xxx?v
Hence, |SLP | ≤ 2

∑
v∈V xxx?v ≤ 2|SOPT |
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Maximum independent set problem

Definition
An independent set in a graph G = (V ,E) is a set of vertices S such that every edge of
E has at most one end vertex in S. Finding a maximal-size independent is the maximal
independent problem.

Integer linear programming formulation

Maximize
∑

v∈V xxxv

subject to xxxu + xxxv ≤ 1 for all uv ∈ E
xxxv ∈ {0, 1} for all v ∈ V

Relaxed problem

Maximize
∑

v∈V xxxv

subject to xxxu + xxxv ≤ 1 for all uv ∈ E
0 ≤ xxxv ≤ 1 for all v ∈ V
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Maximum independent set problem

Relaxed solution

The relaxed solution xxxv = 1
2 for all v ∈ V is feasible, so the optimal relaxed solution is

at least n
2 .

Optimal integer solution
The maximal independent set of a complete graph Kn is a single vertex.

Conclusion
In general, an optimal integer solution can be far from an optimal relaxed solution and
cannot be obtained by a simple rounding.

Inapproximability of the minimmum independent set problem
Unless P = NP, for every C there is no polynomial-time approximation algorithm for
the maximum independent set with the approximation error at most C.
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