The fifth homework is Problem 5.

Problem 1. Suppose we have a system of linear inequalities that also contains strict inequalities. One that may look like this:

$$
\begin{aligned}
5 x+3 y & \leq 8 \\
2 x-5 z & <-3 \\
6 x+5 y+2 w & =5 \\
3 z+2 w & >5 \\
x, y, z, w & \geq 0
\end{aligned}
$$

Is there a way to check if this system has a feasible solution using a linear program?
Does this mean that linear programming allows strict inequalities? Not really. As a strange example, construct a "linear program with a strict ineqality" that satisfies the following:

- There is a simple finite upper bound on its optimum value;
- there is a feasible solution; and
- there is no optimal solution.

This may not happen for a linear program - for a bounded LP, once there exists a feasible solution, there exists also an optimal solution.

Problem 2. Using the graphical methods find the optimal solutions of two objective functions

- min $\boldsymbol{x}_{1}+\boldsymbol{x}_{2}$
- max $\boldsymbol{x}_{1}+\boldsymbol{x}_{2}$
subject to the following conditions.

$$
\left(\begin{array}{cc}
1 & 3 \\
1 & 0 \\
3 & -1 \\
-2 & 1 \\
1 & 1
\end{array}\right)\binom{\boldsymbol{x}_{1}}{\boldsymbol{x}_{2}} \geq\left(\begin{array}{c}
14 \\
0 \\
0 \\
-7 \\
8
\end{array}\right)
$$

Definition 1. Let P be a polyhedron. A half-space $\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{x} \leq \beta$ is called a supporting hyperplane of P if the inequality $\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{x} \leq \beta$ holds for every $x \in P$ and the hyperplane $\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{x}=\beta$ has a non-empty intersection with P.

Definition 2. If $\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{x} \leq \beta$ is a supporting hyperplane of a polyhedron P, then $P \cap\left\{\boldsymbol{x} ; \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{x}=\beta\right\}$ is called a face of P.
By convention, the empty set and P are also called faces, and the other faces are proper faces.
Definition 3. Let P be a d-dimensional polyhedron.

- A 0-dimensional face of P is called a vertex of P.
- A 1-dimensional face is of P called an edge of P.
- A $(d-1)$-dimensional face of P is called an facet of P.

Problem 3. The intersection of two faces of a polyhedron P is a face of P.
Problem 4. Let n-dimensional hypercube be the set $\left\{\boldsymbol{x} \in \mathbb{R}^{n} ; \mathbf{0} \leq \boldsymbol{x} \leq \mathbf{1}\right\}$. Let n-dimensional simplex be the convex hull of $n+1$ affinely independent points such that no point belongs into the convex hull of the other points. Determine the number of k-dimensional faces of the n-dimensional hypercube and the n-dimensional simplex.

Problem 5. First, prove that the following two definitions of the n-dimensional crosspolytope are equivalent.

- $\left\{\boldsymbol{x} \in \mathbb{R}^{n} ; \sum_{i=1}^{n}\left|\boldsymbol{x}_{i}\right| \leq 1\right\}$
- $\left\{\boldsymbol{x} \in \mathbb{R}^{n} ; \boldsymbol{d} \boldsymbol{x} \leq 1\right.$ for all $\left.\boldsymbol{d} \in\{-1,1\}^{n}\right\}$

Second, prove that the number of k-dimensional faces of the crosspolytope is $2^{k+1}\binom{n}{k+1}$.
Lemma 1. If the objective function of a linear program in the equation form is bounded above, then for every feasible solution x^{\prime} there exists a basis feasible solution x^{\star} with the same or larger value of the objective function, i.e. $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^{\star} \geq \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^{\prime}$.

In order to prove the lemma, consider x^{\star} be a feasible solution with $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^{\star} \geq \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^{\prime}$ (e.g. \boldsymbol{x}^{\star} for beginning). Let $K=\left\{j \in\{1, \ldots, n\} ; \boldsymbol{x}_{j}^{\star}>0\right\}$ and let $N=\{1, \ldots, n\} \backslash K$. Let P be be the set of all feasible solutions satisfying $A \boldsymbol{x}=\boldsymbol{b}$ and $\boldsymbol{x} \geq 0$. Prove the following steps.

1. If A_{K} has linearly independent columns, then \boldsymbol{x}^{\star} is a basis solution and the lemma is follows.
2. There exists a non-zero vector \boldsymbol{v}_{K} such that $A_{K} \boldsymbol{v}_{K}=\mathbf{0}$. Let $\boldsymbol{v}_{N}=\mathbf{0}$.
3. Explain why we can assume that $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{v} \geq \mathbf{0}$.
4. Consider the line $x(t)=\boldsymbol{x}^{\star}+t \boldsymbol{v}$ for $t \in \mathbb{R}$. Prove that for every $t \in \mathbb{R}$ it holds that $A x(t)=\boldsymbol{b}$ and $(x(t))_{N}=\mathbf{0}$.
5. Prove that $\boldsymbol{c}^{\mathrm{T}} x(t) \geq \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$ holds for every $t \geq 0$.
6. Prove that the intersection of P and the line $x(t)$ is a line, line segment or a half line segment. How we can distinguish these cases and find both end-points if exists.
