The seventh homework are Problems 5 and 6.

Problem 1. Consider the polyhedron P given by the following conditions.

$$
\begin{aligned}
& x_{1}-x_{2} \leq-1 \\
& -x_{1}-x_{2} \leq-3 \\
& 2 x_{1}-x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0 .
\end{aligned}
$$

1. Draw the polyhedron P.
2. Using the Simplex methods find all vertices of P.
3. Find the optimal solution of the problem $\min \left\{x_{1}+2 x_{2} ; x \in P\right\}$.
4. Find the optimal solution of the problem $\max \left\{3 x_{1}+x_{2} ; x \in P\right\}$.

Problem 2. Solve the following problem

$$
\begin{array}{lcl}
\text { Maximize } & 3 x_{1} & +x_{2} \\
\text { subject to } & x_{1} & -x_{2} \leq-1 \\
& -x_{1}-x_{2} \leq & -3 \\
& 2 x_{1}+x_{2} \leq & 2 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Problem 3. Solve the following problem

$$
\begin{array}{rrrr}
\text { Minimize } & -2 x_{1}+4 x_{2}-x_{3} \\
\text { subject to } & 3 x_{1}-6 x_{2}+4 x_{3} \leq 30 \\
& 2 x_{1}-8 x_{2}+10 x_{3} & \geq 18 \\
& & x_{1}, x_{2}, x_{3} & \geq 0
\end{array}
$$

Problem 4. Solve the following linear programming problem.

$$
\begin{array}{lcl}
\text { Maximize } & 4 x & +5 y+3 z \\
\text { subject to } & x+y+2 z & \geq 20 \\
& 5 x+6 y+5 z & \leq 50 \\
& x+3 y+5 z & \leq 30 \\
& x, y, z & \geq 0
\end{array}
$$

Problem 5. Find all optimal vertices of the following problem.

$$
\begin{array}{cr}
\text { Maximize } & 2 x_{1}+3 x_{2}+5 x_{3}+4 x_{4} \\
\text { subject to } & x_{1}+2 x_{2}+3 x_{3}+x_{4} \leq 5 \\
& x_{1}+x_{2}+2 x_{3}+3 x_{4} \leq 3 \\
& x_{1}+x_{2}+2 x_{3}+7 x_{4} \geq 3 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{array}
$$

Problem 6. Solve the following problem

$$
\begin{array}{lllllll}
\text { Maximize } & & 10 x_{1} & -57 x_{2} & -9 x_{3} & -24 x_{4} \\
\text { subject to } & x_{5}= & - & 0,5 x_{1} & +5,5 x_{2} & +2,5 x_{3} & -9 x_{4} \\
& x_{6}= & - & 0,5 x_{1} & +1,5 x_{2} & +0,5 x_{3} & - \\
& x_{7}=1 & -\quad x_{1} \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7} \geq 0
\end{array}
$$

First, try to use the pivot rule "largest coefficient". Then, solve the problem using "Bland rule".

