1

The ninth homework are Problems 1 and 2.

Problem 1. The problem is to find the distance between two polyhedrons

$$P^{1} = \left\{ \boldsymbol{x}^{1} \in \mathbb{R}^{n}; \ A^{1} \boldsymbol{x}^{1} \leq \boldsymbol{b}^{1} \right\} \text{ and } P^{2} = \left\{ \boldsymbol{x}^{2} \in \mathbb{R}^{n}; \ A^{2} \boldsymbol{x}^{2} \leq \boldsymbol{b}^{2} \right\}$$

in the Postman (L_1) metric. The distance of two sets $P_1, P_2 \in \mathbb{R}^n$ is the distance of two closest points $x^1 \in P^1$ and $x^2 \in P^2$. The distance of two points x^1 and x^2 in the L_1 metric is $\sum_{i=1}^n |x_i^1 - x_i^2|$.

Formulate this problem using linear programming. Then, write the dual problem and complementary slackness conditions.

Problem 2 (The shortest path in a graph). Given a weighted graph (V, E, f) where $f : E \to \mathbb{R}^+$, formulate the problem of finding the lengths of shortest paths from a given starting vertex to all other ones using linear programming. Then, write the dual problem and complementary slackness conditions.

Problem 3. Solve the following problem using duality and Fourier-Motzkin elimination

Maximize			x_2		
subject to	$-x_1$	+	x_2	\leq	0
	x_1			\leq	2
		x_1	$, x_2$	\geq	0

Problem 4. Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Prove the following statements.

- 1. The system $Ax \leq b$ is infeasible if and only if $0x \leq -1$ is a non-negative linear combination of inequalities $Ax \leq b$.
- 2. The system $A\mathbf{x} \leq \mathbf{b}$ has a non-negative solution $\mathbf{x} \in \mathbb{R}^n$ if and only if every non-negative $\mathbf{y} \in \mathbb{R}^m$ with $\mathbf{y}^{\mathrm{T}}A \geq \mathbf{0}^{\mathrm{T}}$ satisfies $\mathbf{y}^{\mathrm{T}}\mathbf{b} \geq 0$.
- 3. The system $A \boldsymbol{x} = \boldsymbol{b}$ has a non-negative solution $\boldsymbol{x} \in \mathbb{R}^n$ if and only if every $\boldsymbol{y} \in \mathbb{R}^m$ with $\boldsymbol{y}^T A \ge \boldsymbol{0}^T$ satisfies $\boldsymbol{y}^T \boldsymbol{b} \ge 0$.

Problem 5. Prove that the system of linear equation Ax = b has a solution if and only if the system $y^{T}A = 0$ and $y^{T}b = -1$ has no solution.