The ninth homework are Problems 1 and 2.

Problem 1. The problem is to find the distance between two polyhedrons

$$
P^{1}=\left\{x^{1} \in \mathbb{R}^{n} ; A^{1} \boldsymbol{x}^{1} \leq \boldsymbol{b}^{1}\right\} \text { and } P^{2}=\left\{\boldsymbol{x}^{2} \in \mathbb{R}^{n} ; A^{2} \boldsymbol{x}^{2} \leq \boldsymbol{b}^{2}\right\}
$$

in the Postman $\left(L_{1}\right)$ metric. The distance of two sets $P_{1}, P_{2} \in \mathbb{R}^{n}$ is the distance of two closest points $x^{1} \in P^{1}$ and $x^{2} \in P^{2}$. The distance of two points \boldsymbol{x}^{1} and \boldsymbol{x}^{2} in the L_{1} metric is $\sum_{i=1}^{n}\left|\boldsymbol{x}_{i}^{1}-\boldsymbol{x}_{i}^{2}\right|$.

Formulate this problem using linear programming. Then, write the dual problem and complementary slackness conditions.

Problem 2 (The shortest path in a graph). Given a weighted graph (V, E, f) where $f: E \rightarrow \mathbb{R}^{+}$, formulate the problem of finding the lengths of shortest paths from a given starting vertex to all other ones using linear programming. Then, write the dual problem and complementary slackness conditions.

Problem 3. Solve the following problem using duality and Fourier-Motzkin elimination

$$
\begin{array}{lcl}
\text { Maximize } & x_{2} & \\
\text { subject to } & -x_{1}+x_{2} & \leq 0 \\
& x_{1} & \\
& & \leq 2 \\
& x_{1}, x_{2} & \geq 0
\end{array}
$$

Problem 4. Let $A \in R^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{m}$. Prove the following statements.

1. The system $A \boldsymbol{x} \leq \boldsymbol{b}$ is infeasible if and only if $0 \boldsymbol{x} \leq-1$ is a non-negative linear combination of inequalities $A \boldsymbol{x} \leq \boldsymbol{b}$.
2. The system $A \boldsymbol{x} \leq \boldsymbol{b}$ has a non-negative solution $\boldsymbol{x} \in \mathbb{R}^{n}$ if and only if every non-negative $\boldsymbol{y} \in \mathbb{R}^{m}$ with $\boldsymbol{y}^{\mathrm{T}} A \geq \boldsymbol{0}^{\mathrm{T}}$ satisfies $\boldsymbol{y}^{\mathrm{T}} \boldsymbol{b} \geq 0$.
3. The system $A \boldsymbol{x}=\boldsymbol{b}$ has a non-negative solution $\boldsymbol{x} \in \mathbb{R}^{n}$ if and only if every $\boldsymbol{y} \in \mathbb{R}^{m}$ with $\boldsymbol{y}^{\mathrm{T}} A \geq \boldsymbol{0}^{\mathrm{T}}$ satisfies $\boldsymbol{y}^{\mathrm{T}} \boldsymbol{b} \geq 0$.

Problem 5. Prove that the system of linear equation $A x=b$ has a solution if and only if the system $\boldsymbol{y}^{\mathrm{T}} A=0$ and $\boldsymbol{y}^{\mathrm{T}} b=-1$ has no solution.

