The tenth homework is Problem 8.

Problem 1. Let $A \in \mathbb{R}^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^m$. Prove the following statements.

- 1. The system $Ax \leq b$ is infeasible if and only if $0x \leq -1$ is a non-negative linear combination of inequalities $Ax \leq b$.
- 2. The system $A \boldsymbol{x} \leq \boldsymbol{b}$ has a non-negative solution $\boldsymbol{x} \in \mathbb{R}^n$ if and only if every non-negative $\boldsymbol{y} \in \mathbb{R}^m$ with $\boldsymbol{y}^{\mathrm{T}} A \geq \boldsymbol{0}^{\mathrm{T}}$ satisfies $\boldsymbol{y}^{\mathrm{T}} \boldsymbol{b} \geq 0$.
- 3. The system $A \boldsymbol{x} = \boldsymbol{b}$ has a non-negative solution $\boldsymbol{x} \in \mathbb{R}^n$ if and only if every $\boldsymbol{y} \in \mathbb{R}^m$ with $\boldsymbol{y}^T A \ge \boldsymbol{0}^T$ satisfies $\boldsymbol{y}^T \boldsymbol{b} \ge 0$.

Problem 2. Let (V, E, ω) be an edge-weighted graph and let $\omega'(e) = \omega(e) + r$ for every $e \in E$ where r is a real number. Prove that every minimal-weight perfect matching of the graph (V, E, ω) is a minimal-weight perfect matching of the graph (V, E, ω') . Does this statement also hold for maximal-weight (general) matchings?

Problem 3. Let G = (V, E) be a graph with weights $c \in \mathbb{R}^E$ and let k be an integer. A k-matching in G is a matching of cardinality k. Using the algorithm for minimum-weight perfect matching find minimum-weight k-matching.

Problem 4. Prove that A is totally unimodular if and only if (A|I) is unimodular.

Problem 5. Prove that the incidence matrix A of a graph G is totally unimodular if and only if G is bipartite.

Problem 6. Prove that the following statements about a matrix A are equivalent.

- 1. *A* is totally unimodular.
- 2. A^{T} is totally unimodular.
- 3. (A|I) is totally unimodular.
- 4. (A|A) is totally unimodular.
- 5. (A| A) is totally unimodular.

Problem 7. Find a 0–1 matrix A and an integral vector **b** such that $\{x; Ax \le b, x \ge 0\}$ is an integral polytope but A is not totally unimodular.

Problem 8. Let *n* be an integer and let *S* be the set of all non-negative $n \times n$ matrices such that the sum of elements in every row and column is one. Prove that *S* is an integral polytope. Which matrices are vertices of *S*? For formal purposes, consider an $n \times n$ matrix as a vector in \mathbb{R}^{n^2} .

Problem 9. Let A be totally unimodular $m \times n$ matrix with full row rank. Let B be a basis of A (that is, a regular $n \times n$ submatrix of A). Prove that $B^{-1}A$ is totally unimodular.

Problem 10. Prove that if a matrix A and a vector **b** are rational, then every vertex of the polyhedron $\{x; Ax \le b\}$ is rational. Next, prove that if every vertex of a polytope P is rational, then there exists rational A and **b** such that $P = \{x; Ax \le b\}$.