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1 Farkas lemma
Problem 1. Prove that the system of linear equation Axxx = bbb has a solution if and only if the system
yyyTA = 0 and yyyTb = −1 has no solution.

Problem 2. Let A ∈ Rm×n and bbb ∈ Rm. Prove the following statements.
1. The system Axxx ≤ bbb is infeasible if and only if 000xxx ≤ −1 is a non-negative linear combination of

inequalities Axxx ≤ bbb.
2. The system Axxx ≤ bbb has a non-negative solution xxx ∈ Rn if and only if every non-negative yyy ∈ Rm

with yyyTA ≥ 000T satisfies yyyTbbb ≥ 0.
3. The system Axxx = bbb has a non-negative solution xxx ∈ Rn if and only if every yyy ∈ Rm with yyyTA ≥ 000T

satisfies yyyTbbb ≥ 0.

2 Matchings in graphs
Problem 3. Let M be a perfect matching of G = (V,E) with weights c ∈ RE . An even cycle C of
G is M -alternating if its edges are alternately in and not in M . The cost of M -alternating cycle C is∑

e∈C\M ce −
∑

e∈C∩M ce. Prove that M is of minumum weight with respect to c if and only if there is no
M -alternating cycle of negative cost.

Problem 4. Let M be a matching of G and let p be the cardinality of the maximum matching. Prove that
there are at least p− |M | vertex-disjoint M -augmenting paths.

Problem 5. Consider the linear programming for Minimum-Weight perfect matchings in general graphs:

Minimize cccxxx
subject to δuxxx = 1 for all u ∈ V

δDxxx ≥ 1 for all D ∈ C
xxx ≥ 000

Where δD ∈ {0, 1}E is a vector such that δDuv = 1 if |uv ∩ D| = 1 and δw = δ{w} and C is the set of all
odd-size subsets of V .

From conditions δuxxx = 1 and xxx ≥ 000 derive using Gomory-Chvátal cutting planes inequalities δDxxx ≥ 1.

Problem 6. Slither is a two-person game played on a graph G = (V,E). The players play alternatively. At
each step the player whose turn it is chooses a previously unchosen edge. The only rule is that at every step
the set of chosen edges forms a path. The loser is the player unable to extern the path. Prove that, if G has
a perfect matching, then the first player has a winning strategy.

Problem 7. Prove that the linear programming

Minimize cccxxx
subject to δuxxx = 1 for all u ∈ V

δDxxx ≥ 1 for all D ∈ C
xxx ≥ 000

is feasible if and only if G has a perfect matching (without using algorithms from the lecture). Also prove
the convex hull of characteristic vectors of perfect matchings is exactly the set of all feasible solution this
set of linear inequalities.

Problem 8. For every n ≥ 3 find a connected graph on n vertices such that the relaxed linear programming
problem for perfect matching (

{
xxx ∈ RE; Axxx = 1, xxx ≥ 000

}
where A is the incidence matrix) has no feasible

solution.
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Problem 9. Let G = (V,E) be a graph with weights c ∈ RE and let k be an integer. A k-matching in G is a
matching of cardinality k. Using the algorithm for minimum-weight perfect matching find minimum-weight
k-matching.

Problem 10. An edge cover of a graph G = (V,E) without isolated vertices is a set of edges D such that
vertex of G is incident with at least one edge of D. Prove that is size of maximum matching plus the size
of minimum edge cover equals to the number of vertices. Find an algorithm for the minimum-weight edge
cover problem.

Problem 11. Let (V,E, ω) be an edge-weighted graph and let ω′(e) = ω(e) + r for every e ∈ E where r
is a real number. Prove that every minimal-weight perfect matching of the graph (V,E, ω) is a minimal-
weight perfect matching of the graph (V,E, ω′). Does this statement also hold for maximal-weight (general)
matchings?

Problem 12. Consider a graph G = (V,E) and the corresponding relax linear programming problem of
perfect matching.

min
∑
e∈E

ce · xe∑
u∈V :uv∈E

xuv = 1, ∀v ∈ V (1)

xuv ≥ 0, ∀uv ∈ E

1. For every n ≥ 3 find a connected graph on n vertices such that (1) has no feasible solution.
2. For every n ≥ 3 find a connected graph on n vertices such that (1) has a feasible solution.
3. Prove that if there exists E ′ ⊆ E such that every component of (V,E ′) is an odd cycle or an isolated

edge, then (1) has a feasible solution.
4. A vector xxx is called half-intergral if 2xxx is an integral vector. Prove that if (1) has an half-integral

feasible solution, then there exists E ′ ⊆ E such that every component of (V,E ′) is an odd cycle or
an isolated edge.

5. Prove that if (1) has a feasible solution, then there exists a half-integral feasible solution.

3 Unimodularity
Problem 13. Consider a 0–1 matrixA in which for every row, the 1s appear consecutively (that is, for every
i there exists j1, j2 such that for every j it holds that Ai,j = 1 if and only if j1 ≤ j ≤ j2). Prove that the
matrix A is totally unimodular.

Problem 14. Prove that A is totally unimodular if and only if (A|I) is unimodular.

Problem 15. Prove that the incidence matrix A of a graph G is totally unimodular if and only if G is
bipartite.

Problem 16. Find a 0–1 matrix A and an integral vector bbb such that {xxx; Axxx ≤ bbb,xxx ≥ 000} is an integral
polytope but A is not totally unimodular.

Problem 17. Let n be an integer and let S be the set of all non-negative n×n matrices such that the sum of
elements in every row and column is one. Prove that S is an integral polytope. Which matrices are vertices
of S? For formal purposes, consider an n× n matrix as a vector in Rn2 .

Problem 18. Let A be totally unimodular m× n matrix with full row rank. Let B be a basis of A (that is,
a regular n× n submatrix of A). Prove that B−1A is totally unimodular.

Problem 19. Prove that if a matrix A and a vector bbb are rational, then every vertex of the polyhedron
{xxx; Axxx ≤ bbb} is rational. Next, prove that if every vertex of a polytope P is rational, then there exists
rational A and bbb such that P = {xxx; Axxx ≤ bbb}.
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4 Cutting planes
Problem 20. Let P = conv

{
(0, 0), (1, 0), (1

2
, 3)
}

and P ′ be the convex hull of all integral points of P .
First, find a system of linear inequalities which determines P . Then, using Chvátal-Gomory cutting planes
derive a system of linear inequalities which determines P ′.

Try to generalize this approach for polyhedron P = conv
{
(0, 0), (1, 0), (1

2
, k)
}

where k ∈ N.
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