Decision Procedures and Verification

Practical 1

1. (0.5 points) Convert $\neg x \leftrightarrow(y \wedge \neg z)$ to CNF using Tseitin's encoding.
2. (1 point) Consider (simple) original and optimized version of a program below. Transform the problem of an equivalence of these two programs to a SAT problem.

\quad Original program	\quad Optimized program
if $(!\mathrm{a} \mathrm{\&} \mathrm{\&} \mathrm{!} \mathrm{~b}) \mathrm{h}() ;$	if $(\mathrm{a}) \mathrm{f}() ;$
else if $(!\mathrm{a}) \mathrm{g}() ;$	else if $(\mathrm{b}) \mathrm{g}() ;$
else f()$;$	else h()$;$

3. (1 point) The n-queens puzzle is the problem of placing n queens on an $n \times n$ chessboard such that no two queens attack each other. Model the puzzle as a SAT problem.

Homework

4. (1 point) Let φ be a formula in negation normal form (NNF) and α an assignment of its variables. Let $\operatorname{pos}(\alpha, \varphi)$ is a set of positively evaluated literals in φ under α. For every assignment β such that $\operatorname{pos}(\alpha, \varphi) \subseteq \operatorname{pos}(\beta, \varphi)$ it holds that if $\alpha \vDash \varphi$ then $\beta \vDash \varphi$. Give a proof.
5. (1 point) In Tseitin encoding replace equivalence among fresh variables and subformula with left-toright implication. Is the resulting CNF formula equisatisfiable with the original one? Is it equisatisfiable if the original formula is in NNF? Prove your answers.
6. (1 point) Let $G=(V, E)$ be an undirected graph. Suggest a propositional formula that is satisfiable it and only if G contains a Hamiltonian cycle.
