Decision Procedures and Verification

Practical 1

- 1. (0.5 points) Convert $\neg x \leftrightarrow (y \land \neg z)$ to CNF using Tseitin's encoding.
- 2. (1 point) Consider (simple) original and optimized version of a program below. Transform the problem of an equivalence of these two programs to a SAT problem.

```
Original program Optimized program

if (!a && !b) h(); if (a) f();

else if (!a) g(); else if (b) g();

else h();
```

3. (1 point) The *n*-queens puzzle is the problem of placing *n* queens on an $n \times n$ chessboard such that no two queens attack each other. Model the puzzle as a SAT problem.

Homework

- 4. (1 point) Let φ be a formula in negation normal form (NNF) and α an assignment of its variables. Let $pos(\alpha, \varphi)$ is a set of positively evaluated literals in φ under α . For every assignment β such that $pos(\alpha, \varphi) \subseteq pos(\beta, \varphi)$ it holds that if $\alpha \vDash \varphi$ then $\beta \vDash \varphi$. Give a proof.
- 5. (1 point) In Tseitin encoding replace equivalence among fresh variables and subformula with left-to-right implication. Is the resulting CNF formula equisatisfiable with the original one? Is it equisatisfiable if the original formula is in NNF? Prove your answers.
- 6. (1 point) Let G = (V, E) be an undirected graph. Suggest a propositional formula that is satisfiable it and only if G contains a Hamiltonian cycle.