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Abstract
100 prisoners and a light bulb is a long standing mathematical puzzle. The problem was studied
mostly in 2002 [5], 2003 [1], and 2004 [3]. Solutions in published articles had average number of
visits above 3850, but best solutions on forums had (declared) average number of visits around
3500. I spent some time in 2007 - 2009 to optimize the communication strategy and I pushed the
average number of visits below 3390, seems no new ideas appear after it. Recently I have met
several people familiar with published papers from 2002-2003 but not knowing newer results. Even
after 2009 several papers on the topic were published where the new results were not mentioned
[4]. Whole book was written about the problem [2]. This is why I am writing this summary.
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1 Problem description

Let us start with one wording of the puzzle: "100 prisoners are imprisoned in solitary cells.
Each cell is windowless and soundproof. There’s a central living room with one light bulb;
the bulb is initially off. No prisoner can see the light bulb from his or her own cell. Each day,
the warden picks a prisoner equally at random, and that prisoner visits the central living
room; at the end of the day the prisoner is returned to his cell. While in the living room,
the prisoner can toggle the bulb if he or she wishes. Also, the prisoner has the option of
asserting the claim that all 100 prisoners have been to the living room. If this assertion is
false (that is, some prisoners still haven’t been to the living room), all 100 prisoners will be
shot for their stupidity. However, if it is indeed true, all prisoners are set free and inducted
into MENSA, since the world can always use more smart people. Thus, the assertion should
only be made if the prisoner is 100% certain of its validity.

Before this whole procedure begins, the prisoners are allowed to get together in the
courtyard to discuss a plan. What is the optimal plan they can agree on, so that eventually,
someone will make a correct assertion?

What is the strategy to beat the warden?"
Note the fixed frequency of visits, so the current visit count is a shared knowledge. Note

the "certainty approaching 1" is not considered to be enough. To emphasize that I prefer
formulation requiring proof based on the communication strategy, where warden logs the
history and is able to check the prisoners behaved according to the strategy used in the proof
(but the original formulation is definitely more readable).

Forums are flooded by out of box solutions with making marks of any sort in the room,
breaking the bulb and so on. This is why the switch is much more important than the bulb,
and the rules allow changes in the room made by warden except changing the switch state.
Alternative formulation preventing that would be warden visits a prisoner and gives him 1
bit of information from the previous visit and asks him, which bit of information should be
given on the next visit.
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The problem we solve is 100A2 version of more general n prisoners and a k state switch
problem (with the visit count) denoted nAk, problems when the visit frequency/count is
unknown are nBk (when the initial switch state is known) resp. nCk, (when the initial
state is unknown). Both nBk and nCk problems are much easier to solve as the strategies
cannot depend on the visit count (and there is a little room for optimization). We will ignore
problems with k > 2 here. We will concentrate on 100A2.

2 Long known solutions

In [5] following competitive strategies were mentioned: Single counter (collector) solution,
two level counting scheme, binary counting scheme and dynamic counter selection trick. Let
me describe them using common terminology. Only small number of bits is sufficient for
description of the states during the process what allowed William Wu to compute expected
number of visits explicitly. Unfortunately for more complicated strategies the results could
be only approximated. I will mention these strategies as well.

3 Communication terminology

To describe a strategy we have to describe two things. One is the meaning of ON/OFF state
at i-th night (global signaling in short). We would use alternatively terms visit count,
day and night. After night 0 the game starts on day 1, night 1 follows, than day 2, . . . . A
prisoner visiting on day d knows the visit count d, he sees the signal from night d− 1 and
leaves in the room signal d according to d-th night signaling.

Often the description of global signaling is split to intervals of nights. The other is
individual prisoners strategy, but this strategy at day i is limited by using signals of night i.
Often the individual strategy can be easily deduced from the global signaling.

Let us introduce tokens to simplify description of signaling. Imagine each prisoner has a
virtual token. Goal of our strategy is to let the virtual token in the room to be collected
by a token collector. When the collector(s) is(are) sure virtual tokens of all prisoners
were collected, the game could be terminated (as collecting a prisoners P token ensures the
prisoner P was in the central living room). We will omit the word virtual in the rest of the
paper, but remember we are strictly following rules and the switch (bulb) state is the only
communication method. Prisoners should deduce the tokens from the state according to
global signaling. I hope negative tokens support the understanding of virtuality.

Let us start with nB2 case, where we are restricted such that signaling at all nights is
the same. One switch state (denote it ON) corresponds to case token being present in the
room, while the other switch state (denote it OFF) means no token is present there.

To make the scheme work n− 1 prisoners have to try let their tokens in the room (but
they cannot left the room with two tokens as there is no such signal) so their strategy is
clear. If they enter in ON state, they should let the state ON and their count of tokens does
not change. If they enter in OFF state and they hold a token, they drop it by switching
state ON (of course they could not switch it ON if they hold no token).

Before the game starts one prisoner should be chosen to be a collector. His goal is to
collect all n− 1 tokens. To achieve this goal he can formally start with token count set to
1− n. When he enters the room in ON state, he can increase the token count and switch
OFF. Otherwise he does nothing. When his token count reaches 0 he knows all required
tokens were collected and the game could be terminated.

One collector nA2 strategy imitates this nB2 strategy. The only difference is the unknown
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switch state at night 0, which should be at the start of the first visit changed to OFF, and
this is the last time visit count is used. From this time the nB2 strategy is followed.

Expected number of visits for the nB2 case could be easily calculated. Divide the nights
to n− 1 periods with switch OFF and n− 1 periods with switch ON. Expected length of
period with switch ON is n as only the collector could switch it OFF (and probability of
its visit is 1/n). Expected length of (n − i)-th period with switch OFF is n/i as only i

prisoners hold tokens (and probability of visit of one of them is i/n). Summing together we
got n(n− 1) + nHn−1 expected number of visits, where Hn = 1 + 1/2 + 1/3 + · · ·+ 1/n is
the harmonic series (and 1 > Hn − ln(n+ 1) > 0, limit of the difference γ ≈ 0.577 is called
Euler–Mascheroni constant).

Problem nC2 could not be easily transformed to nB2 case as the initial state is not
known. This could add one token to the system, so one prisoner may hold his token when
n − 1 tokens are collected — breaking the proof. One solution lets prisoners start with 2
tokens and terminating when 2n− 1 tokens are collected. At most one token is hold by a
prisoner at the end, what means he visited the central room at least once. This solution
has expected number of visits bigger than (2n− 1)n (length of ON phases). Length of OFF
phases is smaller, but more complicated to express as it depends on how many prisoners hold
2 tokens.

Better nC2 strategy lets prisoners start with only 1 token, but possible initial ON state
should signal no token. To achieve this, collector on it’s first visit does not increase his token
count even in the case the state is ON. This requires prisoners not to left their tokens in the
room unless the collector visits it the first time. To achieve this, prisoners cannot switch
from OFF to ON unless they have seen state ON before. So a (non-collector) prisoner starts
in a waiting state and enters nB2 strategy state after he sees ON state. Unfortunately the
collector strategy has to change once more to prevent a prisoner remaining in wait state
all the time. In the case the collector enters in the OFF state, he with nonzero probability
decreases his token count and leaves token in the form of ON state in the room. Optimal
choices for this nonzero probability (parametrized by the game history of the collector) are
out of scope of this paper1. When there are prisoners with tokens in nB2 state, collector
enters in ON state much often than in OFF state and prisoners in waiting state have a
big chance to switch to nB2 state without other influence of the collector. This is why
this strategy has only slightly higher expected number of visits than the nB2 strategy (the
multiplication constant becomes (1 + ε), where ε > 0 is much closer to 0 than to 1).

Let us concentrate on nA2 cases. What are the advantages of possible signaling dependence
on the visit count? What are the bottlenecks of the nB2 strategy?

The problem is the total time n(n − 1) spent waiting in ON state for the collector to
switch OFF. We can either reduce the number of the periods waiting for the switch from ON
to OFF state or reduce the length of such a period. Let us start with the former.

Problem with the nB2 solution is the initial 1− n token count for chosen collector is too
far from 0. Could we do better?

Dynamic collector selection — snowball pre-phase is the way to go. Let us try
to collect as many tokens before naturally choosing the collector. Let the strategy of all
prisoners be the same until the collector is dynamically selected. Snowball length ` has to be

1 I like strategy when the collector computes probability a prisoner with token is in nB2 state. He can
maintain required statistic using Bayesian tricks. He let the switch OFF when probability a prisoner
with token is in nB2 state exceeds 1/2. One should be careful not to underflow (to 0) during the
probability computations.
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carefully chosen. There are −n tokens in the room before the first visit independently on the
state. First entering prisoner discards token and leaves 1− n tokens in the room. He sets
state ON (just for compatibility reasons). State ON at night g ≤ ` means there are g − n
tokens in the room. State OFF at night 2 < g ≤ ` means there are no tokens in the room.
Second night exception defines meaning of state OFF for night 2 such that there are
1− n tokens in the room. This exception increases probability of collecting one token even
in the case for the first two visits the same prisoner was chosen (subtracts n/(n− 1) from
expected visit count in the single collector case). At the night `+ 1 the normal signaling
starts (for single counter state ON means there is 1 token in the room and state OFF means
there is no token in the room).

When prisoner enters day d he collects tokens in the room2, If he is able to let in the
room tokens required by ON signaling and left holding non-negative (0 in this case) tokens,
he does so and signals ON. Otherwise he let signal OFF and corresponding number of tokens
in the room. During the day 2 this means he would hold 0 tokens and 1−n tokens remain in
the room, other day he would have negative number of tokens and be/become collector and
he will left signaling 0 tokens. When a prisoner with −1 token (collector) collects remaining
1 token, he finishes the process.

This translates that if d ≤ ` and he is first time in the room and the state was ON he lefts
all tokens in the room and the state remains ON. If d = 2 (state must be ON) and he is 2nd
time in the room, he switches state OFF (and let tokens in the room intact). If ` ≥ d > 2,
state is ON and he is 2nd time in the room, he switches OFF, grabs all the ((d − 1) − n)
tokens in the room and becomes collector. If d = 3 and state is OFF, he grabs all the (1− n)
tokes in the room and becomes collector. If ` ≥ d > 3 and state is OFF, the collector was
already chosen and prisoners keep their tokens and signal remains OFF. If d = ` + 1 and
state is ON, he becomes collector, he grabs `− n tokens from the room and switches OFF.
At the moment d = ` + 1 and state is OFF, the normal signaling starts. A prisoner with
positive number of tokens (1) tries to discard the token by switching from OFF to ON, a
prisoner with 0 tokens does not change the state, and the prisoner with negative number
of tokens (collector) tries to grab tokens by switching from ON to OFF and the collector
declares process termination when he reaches count 0 of tokens.

Each token collected during the snowball decreases the expected number of visits by
n+ n/i (with corresponding i). To optimize the expected visit count ` has to be chosen by
the following logic: If probability the collector is not chosen yet (n−`n!/(n− `)!) multiplied
by decrease of expected number of visits if we collect one more token (n + n/(n − `))
is less than 1, snowball should not continue. According to Stirling approximation the
probability collector is not chosen yet is (n−`nn/(n− `)n−`)(en−`/en)(

√
2πn/

√
2π(n− `)) · c

where e1/(12n+1)/e1/(12(n−`)) < c < e1/12n/e1/(12(n−`)+1). We can adjust it to form (n/(n−
`))n−`e−`

√
n/(n− `)c = (1 + `/(n− `))n−`e−`

√
n/(n− `)c. Let us adjust bounds for c as

well 1/(12n+1)−1/(12(n−`)) < ln c < 1/12n−1/(12(n−`)+1) so − l+1
144n2+(1/12−`)n−`/12 <

ln c < 1/12−`
12n2−11n . So we have to compare (n + n/(n − `)) ·

√
n/(n− `)(n/(n − `))n−`e−`c

with 1 or equally ln(n+ n/(n− `)) + (n− `+ 1/2) ln(n/(n− `)) + ln c with `. This gives for
example `(100) = 29, `(10000) = 426 and `(1000000) = 5252.

Let us continue with the latter. Let us reduce the length of period in the ON state we
have to increase the probability the chosen prisoner would turn OFF. We can achieve this

2 Their amount can be expressed using c like ternary conditional (?:) as ((state∨d < 2)?(d ≤ ` + 1?(d−
1)− n:1):(d = 2?(1− n):0))
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only if more prisoners would be able to switch OFF. First solution uses multiple collectors
scheme. In this scheme several collectors are chosen and i-th of them subtracts gi from his
token count to reflect his goal to collect gi tokens. It should hold that n = g1 +g2 + . . . so the
total goal of all collectors is to collect all tokens. While there are t collectors with negative
token count, the expected length of period with ON state is just n/t. So the expected length
of such phases is reduced by almost factor of t, while the length of remaining phases remain
almost same. This unfortunately is not for free. We have to check all collectors finished
their job, but token signaling is not good for that. Instead we introduce talent signaling.
One of collectors is chosen as head collector and other collectors signal their finished jobs
by sending talents when possible. We have to reserve some nights for tokens signaling and
other nights for talent signaling (token phase/talent phase). ON means signal of the
corresponding type is present in the room. Unfortunately optimizing the phase lengths is
not easy. Continuing token phase when all tokens were collected is waste of time, stopping
the phase when they were not collected means the talent phase cannot not be successful
and another token phase should be started later. First token phase should last so long the
probability all the tokens were collected approaches 1. First talents phase should last so long
the probability all the talents were collected (even when all talents are ready for collection)
approaches 1. Following recovery phases should last at least 2n, what is expected number of
visits when just one token resp. talent was not collected. The phase switch means the signal
from the last night of the phase should be collected by the prisoner in the room even when
it is not his intention. (For example non-collector could obtain talent at the end of talent
phase. He will try to pass it during the next talent phase. Similarly unlucky prisoner could
end up with two tokens at the end of first token phase or with astronomically low probability
an unlucky prisoner could end up with n− 1 tokens at the end of n− 1-st token phase).

Pre-phases are cheap as there is no phase switch risk, but switching to recovery phases
is expensive. Let us lower bound the expected number of visits assuming there are no visits
lost to the phase switching. In token phase there are (n− t) periods with state OFF and
(n− t) periods with state ON. The expected number of visits in the former is nHn−t, the
expected number of visits in the latter is at least (n− 2t)n/t+nHt. In talent phase there are
t− 1 periods with state OFF and t− 1 periods with state ON. Expected number of visits of
the former is nHt−1, expected number of visits of the latter is nt. Lower bound of expected
number of visits is therefore n(Hn−t +Ht +Ht−1 + n/t− 2 + t). Asymptotically optimal
choice is t ≈

√
n giving θ(n3/2).

Multiple snowballs is the way to choose multiple collectors. Choosing snowballs
parameters is difficult. Good choice is to set the first goal be biggest as the first snowball
has highest expected number of collected tokens. It is crucial to choose different prison-
ers for each goal with high probability. The parameters could be described by a tuple
((`1, s1, g1), (`2, s2, g2), . . . , (`t, st, gt)) with g1 + g2 + · · ·+ gt = n.

Let us define the signaling first (we will use notation pk = (`1+s1)+(`2+s2)+· · ·+(`k+sk)):
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state night g tokens talents
any g = 0 −n 0
ON 1 ≤ g ≤ `1 g − n 0
OFF g = 2 1− n 0
OFF 2 < g ≤ p1 g1 − n t− 1
ON `1 < g ≤ p1 `1 − n 0
ON pk < g ≤ pk + `k+1 (g − pk) + (g1 + · · ·+ gk)− n t− k

OFF g = pk + 1 (g1 + · · · gk)− n t− k

OFF pk + 1 < g ≤ pk+1 (g1 + · · · gk+1)− n t− (k + 1)
ON pk + `k+1 < g ≤ pk+1 `k+1 + (g1 + · · ·+ gk)− n t− k

OFF pt < g 0 0
ON pt < g token phase 1 0
ON pt < g talent phase 0 1

While the snowball subphase is not interrupted, each day the number of tokens in the
room increases by 1. Signal ON means current snowball subphase was not interrupted yet.
Signal OFF means the opposite. When the interruption occurs in the first possible night,
the signal OFF means the next entering prisoner should become collector for the subphase3.
When the interruption occurs later, OFF signal cannot carry the information, so the collector
should be chosen immediately. To become a collector for the phase k + 1 the prisoner lefts
g1 + g2 + · · ·+ gk+1 − n tokens in the room. It effectively means he lefts gk+1 tokens in the
room and takes all tokens collected during the subphase k+ 1. Becoming collector of the first
snowball leaves t− 1 talents in the room, while becoming a collector of another subphase
takes 1 talent. A bit complicated is the behaviour on the boundaries of subphases. At day d,
where pk + `k+1 < d ≤ pk+1 if the snowball was not interrupted yet and the prisoner has
0 talents, he should interrupt the subphase and become its collector. Note that a collector
chosen in previous snowballs does not left a token here as his snowball could have been
interrupted early, while current is not. At day d = pk+1 + 1 if the signal is ON the prisoner
should interrupt the subphase k + 1 and become its collector. Moreover, if another snowball
continues, he does not want to become its collector as well, so he lefts a token in the room.

The behaviour of prisoners without talents is straightforward. The behaviour of prisoners
with talents is more complicated. They could choose to restart already interrupted subphase.
This of course means they should left talents and tokens in the room compatible with the
global signaling. They certainly do it to prevent to have more than 1 talent. But they could
do it even in the case they have just 1 talent if the expected number of tokens collected
during the rest of the snowball subphase is bigger than the number of tokens he should keep.
He cannot restart the snowball subphase if it would mean ending with negative number of
tokens and 0 talents. Note that restarts could lead to situation talent collector is not token
collector so he starts with −t talents in that case (this would increase the expected visit
count so it has to be included in restart choice effectivity calculation).

The token total and talent total are all the time equal 0. Note that having s1 > 0 is
pointless4, experimental results suggests having sk > 1 is not optimal5. Our goal is to get at

3 A collector would restart it by dropping two tokens rather to becoming a double collector.
4 (`− 1, 1, g) differs from (`, 0, g) only when first ` visitors are diferent and one of first `− 1 enters day

` + 1. In latter signaling the collector is able to discard one token not to interrupt the next snowball
subphase.

5 (`k − 1, 1, gk) differs from (`k, 0, gk) only when state was ON at night pk−1 + `k − 1 and the prisoner
entering has 1 token and 0 talents. When next day a collector comes he becomes double collector in the
latter case. If a prisoner with 0 tokens enters (much often), the next snowball prephase is interrupted in



V. Majerech 1:7

most t, but as close to t as possible collectors with roughly equal negative token count (with
the sum of these counts as close to 0 as possible) at the end of the pre-phases.

During talent phases a collector with non-negative number of tokens tries to leave the
talent in the room. Collector with more than 1 talent tries to leave talent in the room as
well. When a talent collector reaches 0 talents and 0 tokens, the game is terminated. All
other collectors left their last talent in the room declaring they collected their goal of tokens.
As the sum of goals is n this means all non-collector prisoners left their tokens in the room
so all prisoners visited the room.

Note the snowballs are able to decrease multiplicative constants, but they cannot affect
the asymptotic6. The first fail tricks subtract from expected number of visits about one day
rather than two. Similarly the influence of sk = 1 is negligible and guessing optimal setting
by a random experiment is inconclusive.

Another try to shorten expected number of visits during the ON state period is allowing
more active prisoners to switch OFF. There is a binary schema with signaling 2k tokens
(or talents) in appropriate stage. Each prisoner with number of tokens/talents having 1 in
k-th bit is active during the stage. Passive (nonactive) prisoners do not change the switch
state during the stage, while active prisoners always do. This means when an active prisoner
enters and switches state from OFF to ON, he has to leave 2k tokens/talents in the room.
Changing state from ON to OFF means collecting 2k tokens/talents. In either case the
prisoner becomes passive for this stage. The total expected number of visits to make all a
active prisoners passive is nHa. Unfortunately this strategy requires log2 a successful stages
to collect a tokens/talents by one prisoner. The phase switching problems are more severe
the more stages could end in unfinished state.

There is a small problem when the total number of tokens in the prison is not in the form
2k. The problem can be solved by adding number of tokens required to round to nearest
power of 2 to the room before the first visit. When the first phase with 2k signaling starts,
the state is changed accordingly to allow collecting possible token amount during the stage.

Lower bound on expected number of visits (ignoring the phase switching) is n(Hn +
Hn/2 +Hn/4 +Hn/8 + · · ·+H1) ∈ θ(n log2 n) for token only collection.

Experiments show that for n = 100, where
√

100 < log2 100, the higher state switching
cost and lowering constants by multiple snowballs the two level collectors scheme behaves
better than the binary token counting scheme.

As snowballs are efficient in reducing the multiplicative constants, binary scheme for
collecting talents are promising way to go. Unfortunately the phase switching/error recovery
problems are more severe and single talent collector strategy still works better for n = 100.
Note the snowballs does make prisoners on level 20 inactive less efficiently than binary scheme,
so combining it with token binary scheme could help only in later stages, but even there the
eventual help will be negligible.

There is also collector binary accelerated strategy in which token/talent collector grabs
tokens/talents in corresponding 2i chunks, and active prisoners join the chunks as in binary
schema. The strategy does not necessarily use all possible binary levels and in repair phases
the maximal used level decreases (what could result in splitting some chunks). Reducing the
number of different signaling decreases the phase switch cost in later stages, unfortunately the

the former case. It is not easy to guess what variant gives smaller expected visit count.
6 When nontrivial portion of prisoners is without tokens, the number of collected tokens by snowballs

become negligible. This is why nontrivial portion of prisoners should remain with tokens at the end of
snowballs.
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phase switch cost in early phases is high. Note that token version could easily be combined
with a snowball. I have not experimented with it. Expected number of visits is asymptotically
θ(n log2 n) for token variant as for binary schema. The help of active prisoners decreases
when there is small number of them. This is probably why in experiments binary talent
observers perform better then collector binary accelerated talents.

Let us approximate the snowball length for binary accelerated strategy. Gain by prolonging
running snowball is between n/(n−`) and n+n/(n−`) let us expect it is about 2n/(n−`) so
we have to compare 2n/(n− `) ·

√
n/(n− `)(n/(n− `))n−`e−`c with 1 or equally ln 2 + (n−

`+ 3/2) ln(n/(n− `)) + ln c with `. This gives informed guesses `(100) = 13, `(10000) = 119
and `(1000000) = 1179. Optimum is somewhere between these bounds and bounds for single
collector case.

4 Observers

From the so far described communication schemes one could get a feeling only few prisoners
have fun during the game. The prisoners without tokens become passive visitors of the
central room. This is actually true only for one collector schema (possibly with the snowball).
When there are more collectors, each prisoner could make statistics of ON OFF observations.
In the unlikely case he sees n changes from ON to OFF states during a token collection phase,
he can declare termination. This is very unlikely especially when snowballs are used, so the
prisoners would not be motivated enough to do such activity. The binary case is different.
With the total number of 2k tokens, observation at the phase with 2k−2 signaling is very
promising. Seeing ON OFF ON OFF during the phase have big enough probability to be
worth of making statistics. Such observation could terminate the game even when the stage
collecting 2k−1 tokens did not started. With much smaller probability the game could be
terminated already in the phase with 2k−3 signaling. Actually even the active prisoners could
make their statistics and the original win condition (joining two bunches of 2k−1 tokens)
could be interpreted as a special case of observer stop (seeing ON OFF during the phase).
In this interpretation the original strategy is just a game not declaring termination, but
allowing observers to declare it.

Does observers game influence the expected number of visits by a measurable amount? I
do not think so, unless we make some other changes.

Binary observers statistics include the state and night count he last left the room and
tuple (o0, o1, . . . , ok), where o0 is the number of tokens/talents he knows were signaled and
oi for i > 1 is the number of tokens/talents he knows were ever ready for level i signaling.
The statistic is defined such that o0 ≤ o1 ≤ · · · ≤ ok. Whenever he increases oi, he makes
sure oi−1 is not smaller (and increases it if required). Observation of ON during 2i signaling
means oi ≥ oi+1 + 2i (so increases when required). Observation of OFF during 2i signaling
has no meaning when last observation was not in the same 2i phase. But if the observation
was in the same phase and it was ON, he adds 2i+1 to oi+1 as he observed join of two 2i
chunks of tokens/talents. When o0 reaches the number of tokens/talents in the system, the
game can be terminated. Note that a prisoner in the room at day d observes the state of
both d− 1 and d night (d and state from the night d is remembered). The signaling caused
by extra tokens from the start should be taken into account as well. Consider 16+8+4 extra
tokens for the 100A2 case. When a prisoner enters after last night of first 21 signaling, if
state is ON, he collects 2 tokens, he set switch to state ON and the 4 tokens are signalled by
it (they are no more extra-tokens). Each prisoner sets the last observation is from the start
of first 22 signaling and the state is ON and adds 4 to o2 (it has independent source than
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other known 22 tokens). If the prisoner in the room is 22 active, he can switch OFF and
take the tokens, so the signal at the first signaling night could be OFF (what would create
o3 = 8 observation of both the active prisoner and the prisoner entering next day. Similarly
the 8 and 16 tokens are released.

Typically when a phase fails, there is very few amount of work left in the phase. Following
phases cannot finish either. In binary scheme typically only one super-token per level is not
created. What means signalization of 2k−1 tokens ended with long ON period, so almost all
observers know the 2k−1 goal is fulfilled (opk−1 = 2k−1 = 2k − 2k−1 ≤ opk−2 ≤ · · · ≤ o

p
0).

If the recovery stages with signaling 2k−2 follows, it typically ends with long ON period
as well, so almost all observers know both 2k−1 and 2k−2 goals were independently fulfilled
(opk−2 = 2k − 2k−1 + 2k−2 = 2k − 2k−2 ≤ opk−3 ≤ · · · ≤ op0). So improved strategy changes
first cycle of recovery stages to have signaling 2k−2, 2k−3, . . . , 1. Typically recovery stage
with signaling equal to the signaling from the fist stage which was not successfully finished is
the last started phase as observers require info only about the missing amount of tokens.

The more efficient recovery, the more risk could be allowed, so the optimal stage lengths
are shorter.

The token binary scheme with observers and optimized order of stages become competitive
with two level counting even for small n. The multi-snowball multi-collectors with talent
binary observers scheme got better results for small n than both two level counting and
binary token schema. It seems the phase switch problem is dominated by the recovery
strategy caused by binary observers.

The following sections would discuss method used in parameter tuning and in the
experimental evaluation of the strategies.

Surprisingly from the simulations another strategy was born. The optimal number of
talents seems to be 3 · 2k rather to 2k. This is incompatible with binary scheme without
observers, but observers method likes it (I call it ternary observers). For 100A2 problem
seems this schema with 12 talents and well chosen parameters is best known strategy so far.

According to asymptotic analysis, token binary observers or one collector with snowball
combined with binary accelerating schema should be optimal strategy for big n. Interesting
question, I have not simulated is which of the strategies prevail for huge n and for which n
they start beating 3 · 2k talent binary observers with multiple snowballs.

5 Parameter optimization method

Each of mentioned communication protocols could be characterized by lengths of its phases
(with specified signaling) and (possible snowball characterizing tuple). For example the
100B2 protocol with snowball of length 29 could be described by ((29, 0, 100),∞,K). When
we are restricted on a protocol of given type, we know the signaling and it need not be
included in the description. As we are describing infinite protocols, there should be a pattern
determining the lengths of all phases. We typically let the recovery phases starting from
2nd to have equal parameters as they have negligible influence on the expected visit count.
I made a decision to include pre-phases in the first phase length. So changes in snowball
parametrization has no influence on the visit count, when the first phase ends. When binary
phases and collector phases are used in the algorithm, I have chosen to maintain the lengths
of collector phases separately from lengths of binary phases. The reason is expected visit
count for one fail recovery is 2n for collector phases while 3n/2 for binary phases so the
repeated last time should be parametrized differently.

I have not found method how to find optimal parameter settings so I have made an
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n average number of visits g algorithm
2 3 binary (discard first token)
3 5.5 binary, discard first token
4 12.3 ternary, discard first token
5 ≈ 23.26 ((3, 0, 5),∞) single collector with 3 nights snowball
6 ≈ 33.76 ((4, 0, 6),∞)
7 ≈ 45.90 ((4, 0, 7),∞)
8 ≈ 60.01 ((5, 0, 8),∞)
9 ≈ 75.72 ((5, 0, 9),∞)
10 ≈ 93.39 ((5, 0, 10),∞)
11 ≈ 112.76 ((6, 0, 11),∞)
12 ≈ 133.97 ((6, 0, 12),∞)
13 ≈ 157.05 ((7, 0, 13),∞)
14 ≈ 181.82 ((7, 0, 14),∞)
15 ≈ 208.52 ((7, 0, 15),∞)

Figure 1: Results for small n.

informed guess for each method and I started simulations. I decided to evolve the parameters
by following strategy. For each parametrization, I have remembered number of simulations
and total visit count of these simulations. With small probability I have modified the
parametrization and I have stored the results based on the parametrization. To decide which
parametrization (gen) to start with, I have generated random number r in interval (0, 1), if
there were s simulations so far, I have chosen in list of parametrizations (gens) ordered by
increasing average number of visits per gen, the gen when total count of simulations exceeded
r3s. This favors more successful gens. Gen changes were not fully random, but reflected
expected patterns (there is no reason to have gi+1 > gi or si > si+1, first collectors phase
should be longer than recovery collector phases, . . . ).

I wanted to find the limits of individual methods so I have simulated each main strategy
separately. So I have obtained averages for gens with two level collectors with multi snowball
for different t, averages for gens with 2k or 3 · 2k collectors with multi snowball and with
binary/ternary observers for different k.

I have reported average of all simulations of all gens (population average). It should be
upper bound of the average of the best gen. As gens with worse average were selected less
often, they did not influence the result too much. I was remembering per gen total number
of simulations and total number of visits I made snapshots of these totals ocassionally and
this allowed me to calculate average from the last snapshot time (last generation average). I
have used Mersene twister as a pseudorandom numbers generator.

Unfortunately I cannot find the source codes, so I will present only the old results. Will I
or anyone else recode and repeat the experiments?

6 Problem with variable number of prisoners + simulation results

I have simulated nA2 problems for n ≤ 100. For n < 16 the optimal solution is probably
known.

For bigger n I have not presented parametrizations, but figure 2 shows the results of
genetic algorithm. I have run the genetic algorithm for each n and algorithm type separately,
I have used scaled parametrization from nearby n as an informed guess to init the simulation.
I have presented population average and last generation average. As the results are close
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Figure 2: Results of genetic algorithms (π2n ln2 n subtracted)

to b(n) = π
2n ln2 n, I have subtracted b(n) from the averages. Running simulation longer

lowered both the averages and last generation average got closer to the whole population
average. This can be seen on peak for n = 89 for 8 talent observers.

The best results for 100A2 case are obtained by talent ternary observers with 12 collect-
ors selected by multi snowball. I got under 3390 average of all simulations, most spread
gen: ((3, 0, 9), (3, 1, 9)3, (3, 1, 8)8, (1928, 657, 665), (440, 442, 439), (506, 512), (378)) had aver-
age around 3355. It started with 12 snowball prephases of total length 47 followed by 1928-47
nights of token signaling, followed by 440 nights of 1 talent signaling, 442 nights of 2 talent
signaling, 506 nights of 4 talent signaling, 378 nights of 2 talent signaling, 378 nights of 1
talent signaling, 657 nights of token signaling, 439 nights of 1 talent signaling, 439 nights of
2 talent signaling, 512 nights of 4 talent signaling, and forever repeated (665 nights of token
signaling, 439 nights of 1 talent signaling, 439 nights of 2 talent signaling and 512 nights of 4
talent signaling). I do not expect 512 nights of 2nd 4 talent signaling is good choice, but 2nd
4 talent signaling does not occur too often to have a noticeable influence on the average.
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