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Abstract

Verification of hierarchical plans deals with the prob-
lem if a given action sequence is a valid hierarchical
plan – the action sequence can be obtained by decom-
posing a particular (goal) task using given decompo-
sition methods. The existing parsing-based verification
approach greedily composes actions until it obtains the
goal task. Greediness implies that this approach also
generates tasks unrelated to the goal task. In this pa-
per, we study the use of heuristics when creating new
tasks. We also ask whether the prior knowledge of the
goal task improves efficiency.

Introduction
In plan verification we must find out whether a given action
sequence forms a correct plan according to a domain model.
In classical planning this consists of verifying that each ac-
tion is executable and that the goal condition is satisfied in
the final state (Howey and Long 2003). In hierarchical plan-
ning we additionally require that a certain task decomposes
into the given action sequence (the plan). A specific root task
might be given as the goal task. In that case, for the plan to
be valid, the goal task must decompose into the action se-
quence. Similarly to a goal condition in classical planning,
there can be a goal description in hierarchical planning. The
goal description is a list of proposition that must be true in
the state after the last action was executed. The plan verifica-
tion problem is NP-hard (Behnke, Höller, and Biundo 2015;
Bercher et al. 2016).

There exist three approaches to hierarchical plan verifi-
cation. One uses a translation of the verification problem
into a Boolean satisfiability problem (Behnke, Höller, and
Biundo 2017) (SAT approach). The second one translates
the problem into a planning problem (Höller et al. 2022)
(planning approach). The third one uses parsing (Barták et
al. 2018; 2020; 2021b) (parsing approach).

Hierarchical domain models show similarities to a for-
mal grammar (Höller et al. 2014; 2016; Barták and Mail-
lard 2017). The plan verification problem is like checking
if a word (action sequence) belongs to the language gen-
erated by the grammar (domain model). This can be done
with parsing. The parsing approach is a bottom-up approach.
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It first builds tasks (layer 1 tasks), whose sub-tasks are ac-
tions. Then it builds new tasks that contain layer 1 tasks in
their sub-tasks. Then it continues layer by layer until it gets
a task that decomposes into all actions.

It is important to note that the parsing approach does not
need information about the goal task. It can find any task
that decomposes into the given sequence of actions. There-
fore it can also be used in plan recognition (Vilain 1990) or
plan correction (Barták et al. 2021a). However, that is not
the standard definition of plan verification. In the standard
definition, the verifier is provided with a goal task and some-
times also a goal description.

This paper focuses on improvements to the parsing ap-
proach. We want to utilize heuristics when creating a new
task. We will create a version of the parsing approach that
solves the standard definition of plan verification and utilizes
the information about the goal. We shall refer to the informa-
tion about goal task and goal description as goal knowledge.
Then we will provide an empirical comparison with all the
verification approaches.

HTN Plan Verification by Parsing
Hierarchical Task Network Planning (Erol, Hendler, and
Nau 1996) is a planning framework that focuses on decom-
position. Specifically, actions in the plan are obtained from
higher-level (compound) tasks that decompose to sub-tasks
until primitive tasks – actions – are obtained.

As explained in paper (Barták et al. 2021b) the pars-
ing approach uses the STRIPS model of actions (Fikes
and Nilsson 1971). Let P be a set of propositions that de-
scribe properties of a world state. Each world state is a
set S ⊆ P of propositions that are true. Propositions that
are not in that state are false. Each action a is modeled
by sets of propositions (pre(a), eff+(a), eff−(a)), where
pre(a), eff+(a), eff−(a) ⊆ P . Preconditions pre(a) are
propositions that must be true before applying the action a.
The positive (eff+(a)) and negative effects (eff−(a)) of
action a cannot overlap eff+(a) ∩ eff−(a) = ∅. Proposi-
tions eff+(a) will become true while propositions eff−(a)
will become false after applying action a. Action a is appli-
cable to state S if pre(a) ⊆ S. If action a is applicable to
state S, the state right after applying action a is:

γ(S, a) = (S \ eff−(a)) ∪ eff+(a).



Note that γ(S, a) is undefined if action a is not applicable to
state S. Let Si be a state at position i. An action sequence
(a1, . . . , an) is executable with respect to a given initial state
if each action is applicable to the state right before it.

Let T be a compound task and ({T1, ..., Tk}, C) be a task
network, where C are its constraints. We describe the de-
composition method as a rule that T decomposes to sub-
tasks T1, ..., Tk under the constraints C:

T → T1, ..., Tk [C]

As the precedence constraints are stated explicitly in C, the
order of sub-tasks on the right side of the rule is irrelevant.

Some tasks may not decompose into any sub-tasks (i.e.,
their decomposition methods don’t mention tasks to decom-
pose into). We demand them to have only before conditions
(more on the conditions later). We call these tasks empty
tasks. An example of an empty task is a task get-to-already-
there. The task get-to-already-there(truck,loc) will have a
before condition: at(truck,loc). Let’s assume we have a truck
that needs to get to some location. However, if the truck is
already there, it does not need to move.

Each task instance (T ) in the decomposition has a start
index indicated as start(T) and an end index indicated as
end(T). For an empty task the start index and end index is
the position of the state in which its before conditions are
satisfied. For a primitive task (action) the start index and end
index are equal to the number of the action in the plan. For a
task instance T that decomposes into other sub-tasks using
the decomposition rule above (T → T1, ..., Tk [C]) the start
and end index are as defined below:

start(T ) = min(start(T1), ..., start(Tk))

end(T ) = max(end(T1), ..., end(Tk)

Note that if there are multiple decomposition rules on how
to decompose a task, we focus on the one that was used to
create this specific task instance.

The constraints in C in the decomposition rule can be of
three different types (first is an ordering constraint and the
other two are decomposition constraints):
• T1 ≺ T2: an ordering constraint meaning that in every

plan, task T1 is before task T2. end(T1) < start(T2).
• before(p, T ): a precedence constraint meaning that in ev-

ery plan, the proposition p holds in the state right before
the first action obtained from task T .

• between(T1, p, T2): a prevailing constraint meaning that
in every plan, the proposition p holds in all the states be-
tween the last action from the decomposition of task T1
and the first action from the decomposition of task T2.
The parsing approach begins by taking the initial state and

creating the following state by applying the effects of the
first action. It continues this way until all states are created.
Then it checks whether the action sequence is executable
with respect to the initial state. If not, the plan is invalid. If
so, it continues by building the decomposition structure.

To build it, the parsing approach creates tasks. It begins
by creating layer 1 tasks whose sub-tasks are actions. Once
all layer 1 tasks are created it continues by creating layer 2

tasks, tasks whose sub-tasks are layer 1 tasks and actions.
The approach continues this way layer by layer until it finds
a task that decomposes into all actions (plan is valid) or until
there are no more tasks to create (plan is invalid).

Every time the approach creates a task for a specific layer
it makes sure that at least one sub-task is new (from the last
layer). This ensures that we don’t create the same task in-
stances over and over again. When creating new tasks, the
approach takes inspiration from the RETE algorithm (Forgy
1982). Each task remembers rules in which it is a sub-task.
When a new instance of the task is created, the task will in-
form the rules. The moment all sub-tasks of a rule have an
instance, the rule is “fired”. This means it will try to create
a new task instance based on these sub-tasks. A pseudocode
and more detailed description of the parsing approach can
be found in (Barták et al. 2021b).

Heuristics
Let us discuss first how we can use heuristics to increase the
efficiency of the parsing approach. Let’s look at a creation
of task T (the sub-tasks are unordered):

T (x, y, z)→ A(x), B(y), C(x, y, z).

Such “lifted” tasks (with variables) represent a set of
“groundings” (instantiating of variables x, y, z with given
constants). Based on actions’ preconditions and effects,
grounding procedures can identify a subset of reachable
groundings (Behnke et al. 2020). Assume the following
groundings are available: A(x1), A(x2) B(y1), B(y2)
C(x3, y3, z1)

The original parsing algorithm goes through the right side
of the rule (sub-tasks) from left to right and it fills the main
task T with the appropriate parameters. If the combination
is not valid, then it removes this partial assignment from
the list. If any partial assignment is still valid the program
continues with the next sub-task. Let’s look at an example.
These are the partial assignments after task A:
T1(x1,−,−) from A(x1)
T2(x2,−,−) from A(x2).
It takes two steps to create them. Then we combine them

with task B. This takes 4 additional steps:
T3(x1, y1,−) from B(y1) and T1
T4(x2, y1,−) from B(y1) and T2
T5(x1, y2,−) from B(y2) and T1
T6(x2, y2,−) from B(y2) and T2
Then we try to combine each of these partial assignments

with C only to discover that none of them are valid (4 more
steps). In total we used 10 steps.

If we started with sub-task C, we would get this partial
assignment: T1(x3, y3, z1). Then we would try to combine
it with sub-task A only to find no combination is valid. Since
there are no partial assignments left we don’t need to check
with sub-task B. This only takes 3 steps (1 step for C and
then 2 for A).

To test how this affects the efficiency of the program we
have created four heuristics: Most Parameters (h0), Least
Parameters (h1), Original (h2) and Instances (h3). The Most
Parameters heuristic takes the sub-task with the most param-
eters first. The Least Parameters heuristic takes the sub-task



with the least parameters first. Original goes through sub-
tasks from left to right. Finally, the Instances heuristic first
takes the sub-task with the smallest number of instances.

In the example above we can see that both the Most Pa-
rameters heuristic and the Instances heuristic choose task C
first (it only has one instance and it has most parameters) and
then choose tasks A and B. The Original and Least Parame-
ters heuristics go through tasks A and B first and finish with
C last. So by using the Most Parameters or Instance heuristic
we can save seven steps.

Note that each of these heuristics first takes the newest
sub-task and then orders the other sub-tasks based on the
heuristic. This is to ensure we don’t create the same task
multiple times. There are a few other technicalities that af-
fect how we order the sub-tasks based on how new the task
is. However, since these are all the same for each heuristic,
we will not focus on them here.

Goal Knowledge
As discussed earlier, standard plan verification problems by
definition provide a goal task and sometime goal descrip-
tion. Together, we refer to this as goal knowledge. The pars-
ing approach by Barták et al. does however solve a differ-
ent problem, namely answering the question of whether the
given sequence can be obtained by some compound task. We
thus extend their work to be applicable to standard plan ver-
ification problems where a goal task is provided in the input.

The parsing approach works in a bottom up manner – it
creates all possible tasks from the ground up until it finds a
task that decomposes into all actions. However, this means
that it might create tasks that are unrelated to the given goal
task. In this paper, we would like to utilize the information
about the goal (goal knowledge) to reduce the number of
tasks created. The goal task can be given as a single task that
is already in the domain or as a new task that decomposes
into multiple sub-tasks from the domain. To compensate for
this we create a new task that decomposes into these sub-
tasks. This new task is the goal task.

We utilize the goal knowledge to reduce the number of
tasks created. First, we mark each lifted task that is reachable
from the goal task. Then we mark recursively each sub-task
of these sub-tasks. Once all reachable sub-tasks are marked,
we go through all tasks again and remove those that are un-
reachable (i.e., not marked). This is done before any variable
substitutions by constants are performed.

We also remove any method that would create an unreach-
able task. Let’s assume we have tasks T1, ..., T4 and a plan
consisting of two actions a1 and a2. Then let’s assume we
are given a goal as a new task: G → T1, T2. These are the
decomposition rules of all the other tasks:

T1 → T3, T2 → a1, T3 → a2, T4 → a2

After the reachability analysis tasks T1, T2 and T3 are
marked. Task T4 isn’t, so it’s removed. The original pars-
ing approach would create all 4 tasks as they decompose
into the given actions (or other sub-tasks). However the new
parsing approach will only create tasks T1, T2 and T3 as T4
is unreachable.

As we remove all unreachable tasks we prune the num-
ber of tasks the approach might create. This pruning should
allow us to find the solution faster because we won’t create
any unreachable tasks. When it comes to empty tasks we still
create them even if they are unreachable but we don’t build
anything on top of them.

Some domains are very versatile for example a planning
domain Monroe (used in International Planning Competi-
tions) has many top level tasks like: shut-off-water-main or
set-up-shelter. If we know the goal task is set-up-shelter, we
don’t need the tasks for shutting water off. For these types of
domains, the knowledge of goal task should be very useful.
On the other hand, some domains only have one very obvi-
ous top level task. For example, the domain Transport almost
always uses a goal task deliver, which decomposes into all
the other tasks in the domain (pick-up, drop, get-to...). In this
case the knowledge of the goal task does not help at all and
only adds some time by doing the analysis. If many domains
only have one obvious top task, the goal knowledge will not
be much faster than the original parsing approach.

Some domains also provide a goal description. For this,
we first create a timeline of all states and then we determine
whether the state after the last action satisfies the goal de-
scription. If not we can stop and the plan is invalid.

Empirical Evaluation
We ran the experiments on an Xeon Gold 6242 CPU. For
each instance, each verifier was given 10 minutes of runtime
and 8 GB of RAM. The domains are split into four groups:
totally ordered valid domains (to-val), totally ordered invalid
domains (to-inval), partially ordered valid (po-val) and par-
tially ordered invalid domains (po-inval).

We are using two versions of the parsing approach. One
utilizes the goal knowledge (goal knowledge version) and
one runs just like the original algorithm (finds any task that
decomposes into all actions, not necessarily the goal task).
First, we tested on domains with goal knowledge and with
and without method preconditions (lines 1-8 in Table 1).
Then we did two more experiments without goal knowledge
and with and without method preconditions. Note that the
domain might have still provided the goal but the parsing
approach wouldn’t have used it and instead found any task
that decomposed into all actions.

There wasn’t a big difference in the number of solved in-
stances between the different heuristics for the parsing ap-
proach (first 4 lines and H0-H3 columns in Table 1). The
best heuristic is the Instances heuristic (H3) which solved
only 19 more instances than the Original heuristic (H2).

We believe this might be due to two reasons. First on do-
mains that only have a few sub-tasks, the heuristics won’t
save many steps. This is because the number of steps tends
to increase the more sub-tasks a task has. The second reason
might be that while the heuristics save a certain number of
steps, the steps are insignificant in the run of the whole algo-
rithm. For a more in-depth analysis, we show in Tables 2 and
3 the number of verified valid total-order plans per domain.
Both of these tables show the setting with goal knowledge.
Table 2 shows the data for instances with method precon-
ditions and Table 3 for instances without method precondi-



Figure 1: Comparison of verifiers with goal knowledge on domains with method preconditions.

tions. We focus only on the valid total-order plans as they
form the largest part of the benchmark set. In most domains
the heuristics don’t influence the number of verified plans at
all.

The exceptions (with method preconditions) are
Factories-simple (H1 and H2 have 8 and 6 fewer in-
stances), Monroe-Fully-Observable (H1 and H2 have about
25 fewer instances), and Transport (H2 and H3 have 4
fewer). Monroe-Partially-Observable is the domain on
which the heuristics performed the best as every heuristics
performed better than the original one (H2 has about
10-15 fewer). Both Monroe domains are generally hard
to ground, have many tasks with many parameters and
overall many more tasks than other domains and thus a
much more complex decomposition structure. This allows
our heuristics to optimise task instantiating a lot. For the
set without method preconditions, the difference stems
mostly from Barman-BDI. Longer Barman-BDI plans have
a high number of objects (up to 55 shots, 50 ingredients, 50
cocktails). Also Barman-BDI contains methods with many
parameters (up to 6) while tasks have fewer parameters (2 at
most). All of this causes a higher influence of our heuristics.

In addition, we also provide information on the plan
length of plan verified with H0, the shortest unverified plans
as well as run-time statistics per domain including Pearson
correlation of the run-time with the plan length. One notable
item are the two Minecraft domains, where we fail to verify
any plan. Here the Planning-based approach verifies most
plans when given method preconditions, but non without.
This provides us with an avenue of possible future work:
better integrating method preconditions into parsing.

Let’s now look at how goal knowledge affects the effi-
ciency. The number of instances differs for runs with and
without goal knowledge (lines 1-4 and 9-12 in Table 1). This
is because some instances specify a goal description. If it
is not satisfied, the runs with goal description knowledge

will stop immediately after checking it and determine the
instance invalid. However the runs without goal description
knowledge just continue to try to find a task that decomposes
into all actions. There are 73 instances in the to categories
that turn from valid to invalid and 1 in the po categories.
Once we subtract that, we can see that both versions (for H3)
solve similar number of instances (less than 10 difference).

We have also compared the parsing verifier against other
verification approaches. Firstly, we used a verifier that trans-
lates the verification problem into a SAT problem (Behnke,
Höller, and Biundo 2017). We abbreviate it as SAT. This ver-
ifier cannot deal with method preconditions (before condi-
tions for methods). Therefore we ran ours tests twice: once
with and once without method preconditions (lines 1-4 and
5-8 in Table 1). Without here means that we have removed
all method preconditions in the domain model. Note that as
for the knowledge of the goal task, removing method pre-
conditions can make previously invalid plans valid. Note
that we did not use the original configuration of this ver-
ifier. Since the original grounding procedure used by the
verifier is known to be inefficient (Wichlacz, Torralba, and
Hoffmann 2019), we have replaced it with a newer and more
efficient grounder (Behnke et al. 2020).

Secondly, we compare against a verification approach that
uses planning itself (Höller et al. 2022). We denote it with
“Planning Approach”. This verifier compiles the plan to be
verified and the planning domain into a new, modified plan-
ning problem. It supports method preconditions. Both these
verifiers take the goal knowledge into account by default and
cannot disable this. Thus a comparison with the parsing ver-
sion that does not take the goal task into account is mean-
ingless (noted as no support in Table 1).

The parsing approach solves more instances than both
SAT and Planning approach on partially ordered invalid do-
mains. On the other three sets of domains it is worse than
the planning approach but better than the SAT approach. In



Benchmark Instances H0 H1 H2 H3 Planning Approach SAT
to-val 10961 9158 (83.55) 9117 (83.18) 9158 (83.55) 9177 (83.72) 10881 (99.27) no support
to-inval 1406 1299 (92.39) 1299 (92.39) 1301 (92.53) 1299 (92.39) 1364 (97.01) no support
po-val 1211 993 (82.00) 995 (82.16) 989 (81.67) 990 (81.75) 1088 (89.84) no support
po-inval 138 136 (98.55) 136 (98.55) 136 (98.55) 135 (97.83) 129 (93.48) no support
to-val-no-mprec 11264 7962 (70.69) 7811 (69.34) 7889 (70.04) 7958 (70.65) 9658 (85.74) 1036 (9.20)
to-inval-no-mprec 1103 915 (82.96) 915 (82.96) 915 (82.96) 915 (82.96) 921 (83.50) 684 (62.01)
po-val-no-mprec 1243 973 (78.28) 968 (77.88) 973 (78.28) 973 (78.28) 1103 (88.74) 897 (72.16)
po-inval-no-mprec 106 106 (100.00) 106 (100.00) 106 (100.00) 106 (100.00) 98 (92.45) 103 (97.17)
to-val-no-gs 11034 9230 (83.65) 9189 (83.28) 9221 (83.57) 9253 (83.86) no support no support
to-inval-no-gs 1333 1223 (91.75) 1223 (91.75) 1223 (91.75) 1224 (91.82) no support no support
po-val-no-gs 1212 999 (82.43) 998 (82.34) 1001 (82.59) 994 (82.01) no support no support
po-inval-no-gs 137 136 (99.27) 136 (99.27) 136 (99.27) 135 (98.54) no support no support
to-val-no-gs-no-mprec 11329 9525 (84.08) 9484 (83.71) 9516 (84.00) 9548 (84.28) no support no support
to-inval-no-gs-no-mprec 1038 928 (89.40) 928 (89.40) 928 (89.40) 929 (89.50) no support no support
po-val-no-gs-no-mprec 1244 1030 (82.80) 1029 (82.72) 1032 (82.96) 1024 (82.32) no support no support
po-inval-no-gs-no-mprec 105 105 (100.00) 105 (100.00) 105 (100.00) 105 (100.00) no support no support

Table 1: Table comparing runs of multiple approaches for plan verification.

Domain #Plans Verifier Shortest Plan Length Runtime for Verified Pearson
H0 H1 H2 H3 Planning unverified Min–Max Avg Median Min–Max Avg Median Corr-

plan elation
H0

AssemblyHierarchical 193 135 135 135 135 193 34 4 – 256 31.1 14 0.4 – 571.411 35.7 0.968 0.618
Barman-BDI 423 397 372 397 396 423 273 10 – 1198 128.4 69 0.3 – 557.186 15.9 0.533 0.813
Blocksworld-GTOHP 158 124 124 124 118 158 466 21 – 6661 482.3 209.5 0.18 – 361.864 34.9 9.114 0.574
Blocksworld-HPDDL 172 166 166 166 165 170 3377 20 – 5732 461.1 163 1 – 501.249 13.9 0.2955 0.941
Childsnack 529 529 528 529 529 519 none 50 – 2500 119.8 80 0.4 – 500.954 2.6 0.385 0.764
Depots 455 427 427 427 427 455 524 15 – 971 129.1 92 0.2 – 450.339 20.1 0.428 0.934
Elevator-Learned-ECAI-16 2812 2790 2790 2789 2790 2812 1575 10 – 2165 225.1 200 0.2 – 527.518 10.1 19.045 0.894
Entertainment 159 159 159 159 159 159 none 24 – 128 71.7 64 0.3 – 2.391 1.0 0.562 0.361
Factories-simple 123 107 99 101 107 123 1636 15 – 2968 623.7 251 0.18 – 545.556 66.7 0.765 0.899
Freecell-Learned-ECAI-16 204 204 204 204 204 204 none 57 – 489 162.7 138.5 0.7 – 53.494 4.4 1.3245 0.889
Hiking 565 565 565 565 565 565 none 26 – 174 70.8 72 1 – 57.689 1.9 0.598 0.604
Logistics-Learned-ECAI-16 1108 1097 1097 1099 1097 1108 1033 27 – 2813 413.1 370 0.3 – 560.817 56.1 11.057 0.857
Minecraft-Player 75 0 0 0 0 74 35 35 – 278 51.9 44 – – 0 –
Minecraft-Regular 766 0 0 0 0 722 35 35 – 9947 253.8 135 – – 0 –
Monroe-Fully-Observable 248 154 150 174 177 248 16 3 – 96 41.5 39 0.68 – 575.484 318.1 262.294 0.318
Monroe-Partially-Observable 217 58 59 46 60 217 18 6 – 91 45.1 45 0.63 – 599.936 338.0 409.781 0.457
Multiarm-Blocksworld 443 376 376 376 376 443 41 20 – 543 182.1 124 0.2 – 307.697 4.7 0.3655 -0.092
Robot 117 90 90 90 90 117 433 2 – 1725 272.4 37 0.3 – 464.611 25.9 0.2045 0.899
Rover-GTOHP 509 268 268 269 269 509 127 16 – 2640 320.7 212 0.4 – 597.899 91.8 1.4755 0.515
Satellite-GTOHP 296 145 145 145 145 296 202 12 – 1584 379.1 270 0.18 – 313.948 56.3 9.461 0.743
Snake 183 170 170 170 171 183 20 2 – 162 20.6 16 0.49 – 374.823 49.8 124.93 0.672
Towers 17 12 12 12 12 12 8191 1 – 131071 15419.1 511 0.41 – 297.734 31.6 0.237 0.668
Transport 695 691 687 687 691 677 1504 8 – 5077 188.9 76 0.2 – 193.067 3.0 0.252 0.806
Woodworking 494 494 494 494 494 494 none 3 – 219 57.5 25 0.3 – 7.848 1.6 0.4805 0.994

10961 9158 9117 9158 9177 10881 16 1 – 131071 239.2 119 1 – 599.936 26.6 0.975 0.095

Table 2: Statistics on the to-val dataset.

the runs with method preconditions, where we compared the
planning and parsing approach the results remained the same
(Figure 1 and lines 1-4 in Table 1). The planning approach
solves more instances on the three domain groups.

Conclusion

In this paper, we set two goals. First, we wanted to use
heuristics when creating a new task. We created three new
heuristics and compared them with the original version. It
has proven that the new heuristics did not increase the effi-
ciency of the program in a significant way.

Our second goal was to utilize goal knowledge to obtain a
parsing-based verifier that solves exactly the same verifica-
tion problem as other verifiers. We have run multiple exper-
iments with and without goal knowledge. The results have
shown that the parsing approach is faster than the SAT veri-
fier but slower than the planning verifier.
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Depots 459 396 396 396 396 61 459 277 15 – 971 129.2 92 1.4 – 147.048 8.0 1.598 0.091
Elevator-Learned-ECAI-16 2877 2788 2788 2788 2788 65 2877 425 1 – 2165 220.1 195 0.2 – 523.926 34.1 9.0195 0.134
Entertainment 159 159 159 159 159 111 159 none 24 – 128 71.7 64 0.19 – 2.427 1.0 0.579 0.965
Factories-simple 123 73 67 67 73 9 58 425 15 – 2968 623.7 251 1.85 – 257.316 29.2 2.368 0.831
Freecell-Learned-ECAI-16 204 100 100 100 100 0 204 133 57 – 489 162.7 138.5 500.4 – 555.312 172.1 117.233 0.665
Gripper-new 10 10 10 10 10 4 10 none 11 – 107 65.6 71 0.24 – 0.332 0.3 0.242 –
Hiking 580 557 557 557 557 0 0 99 26 – 174 70.4 68 1.1 – 562.896 43.5 6.046 –
Logistics-Learned-ECAI-16 1128 487 487 487 487 20 1128 278 3 – 2813 405.9 363.5 1 – 575.366 105.8 19.477 -0.057
Minecraft-Player 75 0 0 0 0 0 0 35 35 – 278 51.9 44 – – 0 –
Minecraft-Regular 766 0 0 0 0 0 0 35 35 – 9947 253.8 135 – – 0 –
Monroe-Fully-Observable 248 165 161 161 162 0 248 16 3 – 96 41.5 39 0.76 – 599.535 368.5 296.851 0.485
Monroe-Partially-Observable 217 50 50 48 53 0 217 18 6 – 91 45.1 45 0.68 – 596.446 350.7 263.263 0.358
Multiarm-Blocksworld 443 261 261 261 261 9 443 41 20 – 543 182.1 124 0.2 – 551.058 50.7 5.438 0.523
Robot 117 82 82 82 82 20 117 198 2 – 1725 272.4 37 0.2 – 307.675 12.4 0.199 0.542
Rover-GTOHP 510 218 219 215 217 23 510 127 16 – 2640 320.2 212 1.8 – 599.276 98.2 1.39 0.333
Rover-PANDA 7 7 7 7 7 7 7 none 8 – 51 35.1 39 0.87 – 0.961 0.4 0.221 –
Rovers-Learned-ECAI-16 144 133 133 133 133 0 144 291 38 – 346 188.8 194 0.363 – 562.533 52.5 29.625 –
Satellite-GTOHP 296 111 112 114 108 9 296 70 12 – 1584 379.1 270 0.19 – 598.642 121.1 25.371 0.442
Snake 183 171 171 171 171 152 183 20 2 – 162 20.6 16 1.52 – 552.793 48.8 144.87 0.736
Towers 17 6 6 6 6 3 12 127 1 – 131071 15419.1 511 0.2 – 33.751 6.3 0.2815 0.523
Transport 698 694 690 690 694 66 677 1504 8 – 5077 188.2 76 0.2 – 188.539 3.0 0.248 0.590
UM-Translog 15 15 15 15 15 15 15 none 9 – 31 18.3 14 0.2 – 0.212 0.2 0.199 –
Woodworking 494 293 293 293 293 255 494 39 3 – 219 57.5 25 0.4 – 302.107 7.6 0.471 0.851
Zenotravel 3 3 3 3 3 3 3 none 9 – 18 12.0 9 0.216 – 0.258 0.2 0.223 –

11264 7962 7811 7889 7958 1036 9658 1 1 – 131071 235.5 118 0.2 – 599.535 48.2 3.546 0.108

Table 3: Statistics on the to-val-no-mprec dataset.
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