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Abstract

Verification of hierarchical plans deals with the problem
of whether an action sequence is causally consistent and
can be obtained by a decomposition of a goal task. This
second sub-problem (finding the decomposition) makes
the verification problem NP-hard. The task decomposi-
tion structure is very close to a parsing tree of context-
free grammar (CFG). Recently, the CFG-parsing al-
gorithm by Cocke—Younger—Kasami (CYK) has been
modified to verify hierarchical plans efficiently. Despite
being fast, the algorithm can only handle totally-ordered
planning domains. In this paper, we ask whether the
ideas from the CYK algorithm can be extended to a
more general parsing-based approach that covers all
planning domains, i.e., including partially ordered ones.
More specifically, we study the effect of modifying the
domain model by limiting the number of sub-tasks in
decomposition methods to two and the effect of chang-
ing the parsing strategy.

Introduction

Hierarchical planning is a form of planning that uses task
decomposition. This is similar to how people solve tasks.
We also tend to split difficult tasks into easier ones. Hier-
archical planning can be used in a variety of different areas
like robotics (Kaelbling and Lozano-Pérez 2011), machine
learning (Mohr, Wever, and Hiillermeier 2018) or for auto-
mated assistance like for Do-It- Yourself home improvement
projects (Bercher et al. 2021).

Plan verification is an opposite process to planning. It ver-
ifies whether a given goal task decomposes into the given
plan. It can be used for instance in mixed initiative planning
(Behnke et al. 2016).

There are currently three hierarchical plan verification ap-
proaches: via SAT, via Planning, and via Parsing. The SAT
approach works by translating the plan verification prob-
lem into a boolean satisfiability problem (Behnke, Holler,
and Biundo 2017). Verification via Planning translates the
problem into a planning problem (Hoéller et al. 2022). Then,
there are two approaches based on Parsing grammars. The
first is a bottom-up approach inspired by parsing in gram-
mars. We shall call it Bottom-up-Parsing Approach. (Barték,
Maillard, and Cardoso 2018; Bartdk et al. 2020; 2021b).
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Figure 1: Example of task interleaving on the left and totally
ordered tasks on the right

The second, which we call CYK approach, extends the
Cocke—Younger—Kasami (CYK) algorithm, but only works
for totally ordered HTN problems (Lin et al. 2023). There
are also approaches that correct a plan if verification fails
(Barték et al. 2021a; Lin, Grastien, and Bercher 2023), but
that is not the focus of this article.

Both Parsing-based approaches focus on the similarity be-
tween hierarchical models and grammars (Holler et al. 2014;
Holler et al. 2016; Bartak and Maillard 2017). Actions corre-
spond to terminal symbols in grammars and compound tasks
correspond to non-terminal symbols. The plan verification
question is akin to asking whether a word belongs to a lan-
guage corresponding to given grammar. There are two main
differences. First, actions can have preconditions and effects
while terminal symbols do not. Second, the right-hand side
of a grammar rule is totally ordered while the decomposition
rules in hierarchical planning (called decomposition meth-
ods) can be partially ordered. Totally ordered domains are
those in which ordering constraints of all methods induce
total order on their tasks. They don’t allow for interleaving
(example in Figure 1) and if a domain is totally ordered then
each task decomposes into a continuous series of actions.

Note that partially ordered methods can’t be turned into
totally ordered ones by simply enumerating all possible lin-
earizations, which follows directly from complexity results
showing that partially ordered HTN planning is undecidable
(Geier and Bercher 2011; Erol, Hendler, and Nau 1996),
whereas total-order HTN planning is not (Alford, Bercher,
and Aha 2015; Erol, Hendler, and Nau 1996). Similarly, plan
verification is also easier in the total-order setting: It can
by done in poly-time in the total-order setting but is NP-
complete in the partial-order setting (Behnke, Holler, and
Biundo 2015; Bercher, Lin, and Alford 2022).



In this work we will focus on the Bottom-up-Parsing ap-
proach, because it is the most versatile of all approaches. As
opposed to the SAT approach it can handle method precon-
ditions (also the SAT approach is not strong in showing the
invalidity of plans). As opposed to the planning approach it
can handle between conditions and as opposed to the CYK
algorithm it can handle partially ordered domains. It is also
the only approach that can solve a variation of the plan ver-
ification problem without a given goal task (i.e., initial task
network). However it is currently slower than the CYK ap-
proach and it solves less instances within the time limit than
the Planning approach on valid instances. We aim to bring it
on par with the other two algorithms.

The CYK approach uses a form of pre-processing, which
we will call 2-regularization (Behnke and Speck 2021) that
limits the number of subtasks per task to a maximum of
2. When compared against the Bottom-up-Parsing approach
this 2-regularization was attributed to its better performance.
Due to the similarities between the CYK and the Bottom-up-
Parsing approach we ask whether the 2-regularization could
benefit the more general parsing inspired approach as well.
In this article we aim to answer that question.

In previous publications of the Bottom-up-Parsing ap-
proach (Ondrckovd et al. 2023) a different form of search
(we shall call this search-system) was suggested as idea for
possible future work. The focus of this article is mainly 2-
regularization but we will also try to create a different search
strategy.

The paper is structured as follows. First, we shall for-
mally describe the hierarchical plan verification problem.
Second, we will describe the Bottom-up-Parsing approach
in detail. Third, we will introduce a grounder, which will
be used to perform the 2-regularization and describe the 2-
regularization. Fourth, we will explain the new search strat-
egy. Finally, we will compare the new Bottom-up-Parsing
approach with the other approaches.

Hierarchical Planning Verification

For hierarchical planning, which focuses on task de-
composition (Erol, Hendler, and Nau 1996; Bercher, Al-
ford, and Holler 2019), we use the STRIPS model
(Fikes and Nilsson 1971) of actions. Each state is
a set of propositions (P) that are true. Each action
is given by a tuple (pre(a),eff™(a),eff (a)), where
pre(a),eff™(a),eff (a) C P. The first set represents
preconditions that must be true in order for the action to be
valid and the other two represent the effects of the action
on the state of the world. If all preconditions of an action
are satisfied in a state .S, we call the action applicable to
state S. The state after the action was applied is defined by
v(S,a) = (S \ eff(a)) Uefft(a). An action sequence
is executable if each action is applicable to the state before
it. Let T be a compound task and ({11, ..., T} }, C) be a task
network. The decomposition method M can be written as
a rule that 7' decomposes to sub-tasks 77, ..., T} under the
constraints C:

T —T,...T [C]

Figure 2: Example of parsing-based plan verification.

The order of sub-tasks is described explicitly in C, so the
order in the sequence 711, ..., T}, does not matter. There are
three types of constraints:

e 71 < T5: an ordering constraint meaning that in every
plan, task 77 is before task 7.

* before(p,T): a precondition constraint meaning that in
every plan, the proposition p holds in the state right be-
fore the first primitive sub-task of 7' is executed.

o between(Ty,p,T5): a prevailing constraint meaning that
in every plan, the proposition p holds in all the states be-
tween the last primitive sub-task of task 7} and the first
primitive sub-task of task 7% is executed .

Hierarchical planning problems can be formalized as fol-
lows: Given a description of tasks and their decompositions
(in the domain model), initial state S and goal task G (in
the problem instance), does an executable action sequence
(plan) exist, such that G decomposes into it? This sequence
is the output.

Plan verification: Given an action sequence (plan), initial
state S and goal task G, can G be decomposed into the plan
and is the plan executable?

Plan Verification with Bottom-up-Parsing
Algorithm

The Bottom-up-Parsing algorithm (Ondrckova et al. 2023;
2022; Bartdk et al. 2021b; 2020) begins by checking that
preconditions of each action are satisfied. If not then the
plan is invalid and the algorithm is finished. If they are satis-
fied, then it continues by building the decomposition struc-
ture layer by layer. An example is shown in Figure 2. This
layer by layer building is akin to breadth-first search (BFS).

First each action of the plan will inform a method, where
it is a sub-task that it’s available. If all sub-tasks of a
method are available, the method is ready - prepared for
task creation. Then the algorithm picks the first method that



is ready. When creating a task from a method the algorithm
creates all possible instances of the main task of the same
method before it moves to the next ready method. We call
this an “at once” system. For example we might have a
method deliver(From,To,What, Car), whose main task is
deliverT(To,What), with subtasks:pick-up(From,Car,What),
drive(From,To,Car), drop-off{To,What,Car) Let
these be  available actions:  pick-up(L1,C1,PI),
drive(L1,L2,C1), drive(L1,L3,C1), drop-off(L2,P1,CI)
and drop-off(L3,P1,CI). Then from this method two tasks
are created: deliverT(L2,P1) and deliverT(L3,P1).

After going through all methods, the algorithm creates all
tasks that decompose only into actions. We shall call these
layer 1 tasks. This is considered one iteration of the algo-
rithm. Note that when a task is created the algorithm checks
whether it’s the goal task and whether it decomposes into all
actions. If so, the plan is valid and the algorithm is finished.
If not, the algorithm continues.

Created tasks will inform methods, where they are sub-
tasks that they are available and if all sub-tasks of a method
are ready, then the method is ready. These new methods will
allow for creation of layer 2 tasks - tasks that either de-
compose only into layer 1 tasks or combination of layer 1
tasks and actions. This step would finish the next iteration of
the algorithm. Essentially each iteration creates tasks of one
layer. It continues this way layer by layer until it finds the
goal task or until all possible tasks are created.

Task Creation In this section we will describe how the
the Bottom-up-Parsing approach creates a new task. Let us
assume we want to create task 7' using a method T' —
A, B,C, D. It will begin by picking an instance from task
A: Al and checking it against the instance of task B: B1. If
they are compatible it will take this combination of A1B1
and check against that instances of C' and so on. It will do
this all together, meaning that at the end it will get all possi-
ble instances of task 7T'. It is important to note that if there is
no compatible combination between A and B it will not try
combining any C' and D, because we already know that no
task can be created. We always pick the newest sub-task first
so if tasks A, B and C had instances created in iteration 2
but task D had instances created in iteration 4 we will pick
D first and then try to combine it with A, B then C.

In previous work reordering of checks of tasks (starting
with C for example, then A...) was suggested (Ondrckovd et
al. 2022) but the difference in performance was small. Note
we will be using the Instance heuristic, which picks the sub-
tasks that has the least instances first. Any reordering will
still pick new sub-tasks first.

Grounder

In the latest article about the Bottom-up-parsing approach by
Ondrckova et al. (2023) they utilize grounding to increase
the performance of the approach. Grounding is a process
that instantiates all variables with suitable constants. For this
they used the grounder created by Behnke et al. (2020). This
grounder can also perform the 2-regularization, which has
not been used before on the Bottom-Up Parsing Approach.

Figure 3: Example of 2 regularization.

2-regularization

As explained in Section the 2-regularization (Behnke and
Speck 2021) is one of the reasons for better performance
of the CYK algorithm compared to the Bottom-up-parsing
approach on totally ordered domains (Lin et al. 2023). 2-
regularization is a process of limiting the number of sub-
tasks to a maximum of two by transforming the domain
model. This is similar to one of the steps in transforming
grammars into Chomsky normal form. For a task T" with x
subtasks (for x > 2), 2-regularization will create © — 2 new
tasks. This can be seen in Figure 3, where part A represents
the original task decomposition of task 7" and part B shows
the decomposition after 2-regularization. Let us look at an
example: T' — T3, T5...T,. For this task T', 2-regularization
will create x — 2 new tasks S such as this:

T — T1, Sl,
S1 — 15,595..380—3 = Tp_2,8p-2:8;—2 = T 1T,

Greedy search

The latest version of the Bottom-up-parsing algorithm be-
haves like a BFS. However in previous publications it was
suggested that moving to a different search strategy might
benefit the algorithm (Ondrckova et al. 2023). So we decided
to create a new greedy system that uses a static heuristic. In
practice it will be similar to depth first search. We created
a heuristic that calculates the minimum distance to the goal
task g. This heuristic is calculated for each task at the be-
ginning of the algorithm. The goal task’s (and it’s method’s)
goal distance is 0. Each method describing decomposition
of some task .S with minimum goal distance g, sets its sub-
tasks’ Ty...T, minimum goal distance to g(S) + 1. A task T'
might be a sub-task in multiple methods My, ..M,. If that is
the case g(T) = min(g(My), ..g(Mn)) + 1.

Then if multiple methods are ready, instead of picking the
first one, the algorithm will pick the one with smallest g. In
practice this means that we always try to pick the method
that is the closest to the goal task.

We created two versions of this search. One that uses the
at once system and one that creates tasks one by one. Essen-
tially when a method is ready and selected, we only create
one new task from this method and then we pick the next
method with minimal heuristic value (this could be the same
method again but a new method closer to the goal might be-
come ready and therefore is selected). We call this the one
by one system. There is no point in doing a BFS with the one
by one system as after creating one task from the method the
same method would just be selected again until all tasks of
the method were created.
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Figure 5: Runtime of verifiers on partially ordered domains

Empirical Evaluation

The experiments were run with a time limit of 10 minutes
on Intel Xeon Gold 6130 processors with 8§GB of RAM. For
the best comparison we use the same 13714 instances that
were used in previous experiments (Bartdk et al. 2021b;
Holler et al. 2022; Ondrckova et al. 2022). We split the in-
stances into four groups: to-valid and to-invalid for valid and
invalid totally ordered domains and po-valid and po-invalid
for partially ordered domains.

We run the test for 8 verifiers: Parsing-GP,Planning,
Planning 2,BFS 2,Greedy 1-by-1 2,Greedy all 2, Parsing GP
2 and CYK 2. Parsing-GP is the latest version of the Bottom-
up-parsing approach as it was presented in (Ondrckova et al.
2023). BFS 2,Greedy all 2 and Greedy 1-by-1 2 are all new
versions of the Bottom-up-parsing approach. BFS 2 has im-
plementation improvements over Parsing GP. Specifically
some programming structures were changed (List to Dic-

tionary) for faster input processing. Greedy all 2 uses the
greedy heuristic based search. Greedy I-by-1 2 also uses
the greedy search strategy and it uses the one-by-one sys-
tem instead of the at once system. Note that the algorithms
are run either on grounded domains or grounded domains
with 2 regularization (this is marked with 2 after the name
of the algorithm). This is because it was shown in the previ-
ous work that the bottom-up-approach solves more instances
on grounded domains (Ondrckova et al. 2023) and Planning
uses grounded domains anyway. CYK algorithm by default
uses 2-regularization. We did not include the SAT verifier as
it was already shown in previous articles that the Bottom-
up-parsing verifier outperforms it (Bartdk et al. 2021b).

Table 1 shows the number of solved instances for all ver-
ifiers in each of the four groups within the time limit.

First, let us look at the performance of our new versions
(BFS 2,Greedy all 2 and Greedy 1-by-1) against the previous
version of the Bottom-up-parsing approach Parsing-GP. All
three algorithms solve more instances in every group than
(Parsing-GP). As can be seen in Figures 4 and 5 all three al-
gorithms are also faster than the Parsing-GP version. Out of
the three approaches BFS 2 solves most instances. If com-
pared to the Parsing-GP version it solves additional 6,8%
of all instances (751 instances) on fo-valid domains, 1% (14
instances) on to-invalid, 9,4% on (102 instances) po-invalid
and on po-valid domains it solves one additional instance,
which means it can now solve all po-invalid instances.

Next let us compare our best new version BFS 2 against
the Planning approach. Out of the four groups the BF'S 2 out-
performs the Planning approach in three (on number of in-
stances solved). In the remaining group of fo-valid domains
the BFS 2 is now on par with Planning approach (less than
1% difference in total number of instances solved). In Fig-
ures 4 and 5 we can see that the BFS 2 approach has an
overhead compared to the planning approach (on easier in-
stances), but once the instances get difficult enough it out-
performs the planning approach. The only exception are the
to-valid domains, where both approaches are converging.

Finally, let us look at BFS 2 and CYK 2. The CYK al-
gorithm is faster on totally ordered domains. If we look at
the number of instances solved, the BF'S 2 solves essentially
the same amount when it comes to invalid totally ordered
domains (1405 vs 1406). On valid totally ordered domains
the BFS 2 solves 10857 instances and CYK solves 10920
instances. The difference is 63 instances (0,57% of all in-
stances). We can see that the Bottom-Up-Approach is now
on par with the CYK algorithm in terms of number of in-
stances solved and it still has the benefit of being able to
solve partially ordered instances.

Question 1: What causes the increase in performance?

Currently all three new versions of the Bottom-Up-
Parsing approach outperform the Parsing-GP version. What
is the main cause of the improvement? Is it 2-regularization,
algorithmic improvement or search strategy? To answer this
we ran an experiment, where we ran the Parsing-GP version
on 2-regulated domains. The results can be seen in Table
1 under the Parsing-GP 2 column. It solves 664 additional
domains on fo-valid. This is 88% of the 751 instances that
the BFS 2 solves additionally compared to Parsing-GP. On



| #inst | Parsing-GP | Planning

Planning2 | BFS2

Greedy 1-by-12  Greedy all 2 Parsing-GP2  CYK

plans 10961 | 10106 (92.20) | 10925 (99.67) 10919 (99.62) | 10857 (99.05) 10824 (98.75)

10839 (98.89) 10770 (98.26) 10920 (99.63)

inval-to | 1406 | 1390 (98.86) | 1364 (97.01) 1364 (97.01) | 1405(99.93) 1404 (99.86) 1405 (99.93) 1405 (99.93) 1406 (100.00)
po-plans | 1211 | 1075(88.77) | 1112(91.82) 996 (82.25) | 1177 (97.19) 1174 (96.94) 1178 (97.27) 1170 (96.61) NA
inval-po | 138 136 (98.55) 129 (93.48) 130 (94.20) 138 (100.00) 138 (100.00) 138 (100.00) 138 (100.00) NA
Table 1: Number of solved instances for different verifiers within the time limit.

Domain #Plans Verifier

Parsing-GP  Parsing-GP 2-reg | BFS  Greedy 1-by-1  Greedy all | Planning CYK
AssemblyHierarchical 193 193 193 193 193 193 193 193
Depots 455 455 455 455 455 455 455 455
Entertainment 159 159 159 159 159 159 159 159
Freecell-Learned-ECAI-16 204 204 204 204 204 204 204 204
Hiking 565 565 565 565 565 565 565 565
Monroe-Fully-Observable 248 248 248 248 248 248 248 248
Monroe-Partially-Observable | 217 217 217 217 217 217 217 217
Snake 183 183 183 183 183 183 183 183
Woodworking 494 494 494 494 494 494 494 494
Barman-BDI 423 390 420 423 423 423 421 423
Blocksworld-GTOHP 158 126 149 154 154 154 158 153
Childsnack 529 529 529 529 529 529 528 525
Elevator-Learned-ECAI-16 2812 2750 2784 2805 2802 2793 2812 2812
Logistics-Learned-ECAI-16 | 1108 723 1092 1103 1106 1106 1108 1108
Minecraft-Player 75 74 74 75 74 75 75 75
Multiarm-Blocksworld 443 381 416 428 396 421 443 443
Robot 117 90 90 92 89 90 117 117
Rover-GTOHP 509 509 508 509 509 509 509 509
Satellite-GTOHP 296 296 293 296 296 296 296 296
Transport 695 668 691 691 694 695 681 692
Blocksworld-HPDDL 172 165 165 166 166 163 170 168
Factories-simple 123 107 105 122 121 119 122 122
Minecraft-Regular 766 568 721 734 734 734 755 747
Towers 17 11 11 12 12 12 12 12

Table 2: Runtime of verifiers on totally ordered domains

partially ordered valid domains the Parsing-GP 2 solves ad-
ditional 95 instances, which is 93% out of the 102 addition-
ally solved by BFS 2. This indicates that the main cause of
improvement comes from 2-regularization. For invalid do-
mains the Parsing-GP 2 solves the same amount as the BFS
2 version further proving our hypotheses.

Question 2: Why do the 2-regulated domains cause
such an increase in performance? There are two reasons:
retention of information and Last-subtasks-focus. Let us ex-
plain on Parsing-GP and Parsing-GP 2. The Parsing-GP al-
gorithm and the previous versions do not retain information
between iterations, but 2-regularization does. This allows us
to avoid testing certain combinations of tasks multiple times.

Let us assume we have task T" — A, B,C, D and let us
assume we have 1 instance of A and 5 instances of B, C and
D each. Also we shall assume that only one combination of
C and D instances is valid: C1,D1. Lastly we shall assume
that task A is the newest. Now let us look at what happens
during two iterations of the Bottom-up-parsing algorithm.

In the first iteration the Bottom-up-parsing algorithm will
reach this method. It will then set A to Al and then check
it with all instances Bs. If the combinations (of for example
A1B1) are valid it will then check these combinations of AB
with C and so on. It does this all at once. So it will compare
all instances together to find all valid instances. This means
it will do 1*5*5%5=125 comparisons. It will find 5 valid in-

stances of T (A1C1D1 combined with every instance of B).
Let us assume that during this iteration we get a new instance
of A: A2. So once we reach the next iteration we go back to
the same method, because we have a new sub-task option:
A2. The algorithm will set A to A2 and check it with all the
Bs and then these combinations A2B with all Cs and then
all Ds. It will again do 1*5*5*5 comparisons. Clearly part
of the computation is repetitive. The algorithm tried com-
bining all Cs with all Ds, even though already in the first
iteration we found out that only one combination is valid.

The 2-regularization helps retain this information. The de-
composition rules for task 7" with 2-regularization look like
this: " — A,T1; T1 — B,T2; T2 — C,D. Figure 6
shows the process of task creation on 2-regulated domains.
For the first iteration it only needs 35 checks as opposed
to 125, this is due to the Last-Subtask-Focus which we will
discuss later. At the next iteration after we get new A:A2, in-
stead of recalculating the combinations again and therefore
doing another 35 checks we actually retain previous infor-
mation in T1 and we only have to do 5 more checks (A2 with
all 5 instances of T'1). In total the Parsing-GP version needs
2%125=250 checks to find the 10 valid instances, while the
Parsing-GP 2 only needs 40.

Essentially 2-regularization allows us to package valid

combinations of a sequence of sub-tasks to the right of a
given sub-task. Instances of T'1 are all valid combinations
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Figure 6: How 2 regularization creates tasks

of the original sub-tasks B,C,D. Instances of T2 are simply
all valid combinations of C and D. So every-time we get new
sub-task (like A2) we only have to check with the “package”
of all the valid combinations to the right of it (T1 instances).
The 2-regularization should therefore be especially help-
ful on domains that are complicated and have multiple de-
compositions for the same tasks (which will cause us to go
back to the same method in multiple iterations). In Table 2
we show number of instances solved per domain on fo-valid
domains. We can see significant improvements in perfor-
mance on complicated domains such as Minecraft-Regular.
Due to the combination of the bottom-up nature of the ap-
proach with the 2-regularization the algorithm will always
combine the last subtasks first (we call this Last-Subtask-
Focus). This can be especially beneficial if some combina-
tions of these tasks is invalid. If the tasks are in the right or-
der and some of the tail end tasks like in the example above
are invalid, 2-regularization can help us save number of tests
by not checking combinations repeatedly (35 vs 125).
Question 3: Is it possible that non regulated domains
might perform better than 2-regulated ones? Yes. Clearly
2-regularization only helps if the domain contains methods
with more than 2 sub-tasks. Without the 2-regularization the
tasks combination is based on Instances and task novelty (in
our example that corresponds with going from left to right).
It will try to combine A with B and then only combine the
valid combinations of that with C. So if a combination of all
sub-tasks A and B would be invalid, the original approach
would not even try to combine it with sub-tasks C or D. This
would save it multiple checks. Since 2-regularization has the
Last-Subtask-Focus it would first create all valid combina-
tions of C and D and package that into T2, then all valid
combinations of B,C,D and package that into T1 and then
try it with A only to find that no combination is valid.
Question 4: Doesn’t the 2-regularization of the do-
mains have the same effect as reordering task checks?
We mean checking the sub-tasks in different order (not or-
dering in the domain). The answer is no. This is because of
retention of information. Let’s imagine we reordered the task

checks so that the original approach would also have this
Last-subtask-focus and start by combining these last sub-
tasks. Let us imagine that we are at iteration 2 in the previous
example. The 2-regulated approach would need 5 checks to
find these new instances of T (by combining T1s with A2).
The original approach would take A2 (it always takes new
tasks first) and try to combine it with all Ds then all Cs (25
checks). Then that one valid combination A2D1C1 with all
Bs (5 checks) for total of 30 checks. So it would recalculate
the combination of Cs and Ds from iteration 1.

Question 5: How did changing to the Greedy search
strategy and the one by one system affect performance?
It didn’t increase the performance of the algorithm in any
significant way. We believe this might change if different
heuristic was used. Currently we used a static heuristic. That
means that it’s calculated once at the start of the algorithm
and then the algorithm greedily picks the task that is clos-
est to the goal task. In future work we consider a dynamic
heuristic that would combine the goal distance of a task with
the layer of the task. This would be similar to A* algorithm.

Conclusion

In this article our goal was to study whether ideas presented
in a recent publication of a new plan verification approach
using the CYK algorithm (Lin et al. 2023) could be used in
the current Bottom-up-parsing approach. If so, to integrate
them and test the new version against other approaches. This
is of interest because the Bottom-up-parsing approach is
more versatile and it can solve partially ordered,while the
CYK algorithm can only solve totally ordered domains.

As a secondary task we also tried to implement some
of the ideas presented in previous works of the Bottom-
up-parsing approach like moving away from the BFS like
search. This was not effective but it has presented an idea
for a heuristic that might benefit the approach in the future.

The main focus of this article was on 2-regularization,
which limits the number of sub-tasks of a task to a maximum
of two. This has proven to be very successful. While the
Bottom-up-parsing approach is slower than the CYK algo-
rithm on totally ordered domains, it solves nearly the same
amount of instances within the time limit (Iess than 1% dif-
ference). It can also solve instances in partially ordered do-
mains,which the CYK algorithm cannot. It also outperforms
the planning approach (which is a an approach that can solve
both totally and partially ordered instances). The Bottom-
up-parsing approach now solves more instances than the
planning approach in three out of four domain groups and
it’s on par with it in the last group (less than 1% difference).
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