
Parsing-Based Recognition of Hierarchical Plans Using the Grammar Constraint

Kristýna Pantůčková, Simona Ondrčková, Roman Barták
Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Praha 2, Czech Republic

{pantuckova, ondrckova, bartak}@ktiml.mff.cuni.cz

Abstract

Plan recognition is the problem of recognizing a goal
task and an agent’s plan based on the observed actions.
Plan recognition techniques can be employed in multi-
agent systems, behaviour recognition, computer secu-
rity, and other fields related to artificial intelligence. Hi-
erarchical task networks (HTN) describe the decompo-
sition hierarchy of tasks in planning problems. In HTN
plan recognition, a prefix of the plan (actions observed
so far) is given as an input, and the aim is to find
a task that decomposes into a sequence of actions with
the given prefix. In this paper, we show how the per-
formance of parsing-based HTN plan recognition can
be improved by restricting possible suffixes of the given
prefix based on generalized arc consistency of a corre-
sponding context-free grammar.

Introduction
Plan recognition is the task of recognizing the goal and
the plan of an agent based on its action. In classical plan
recognition, a sequence of observed actions of an agent is
given as an input and the aim is to find the complete plan and
the goal of an agent based on the knowledge of the planning
domain (preconditions, effects and costs of actions), candi-
date goals and the initial state. Plan recognition has appli-
cations in behaviour recognition (Niu et al. 2004), computer
security (Li et al. 2020), multi-agent systems (Kaminka, Py-
nadath, and Tambe 2002), or computer games (Ha et al.
2011).

Hierarchical planning (Erol, Hendler, and Nau 1996)
deals with problems where tasks form a hierarchy. Tasks
can be decomposed into subtasks until indecomposable tasks
(actions), which are executable by an agent, are reached.
The resulting sequence of actions is a plan of an agent. In
hierarchical plan recognition, the aim is to find the root task
which decomposes into an observed prefix of a plan. Hierar-
chical planning problems are frequently described by hier-
archical task networks (HTN).

We present an improvement of an HTN plan recogni-
tion approach of (Barták, Maillard, and Cardoso 2020). We
reduce the number of possible plans that the recognizer
must take into account by pruning actions in an unobserved
plan suffix using the grammar constraint. In this paper, we

Copyright © 2023 by the authors. All rights reserved.

firstly mention related works, then we provide background
on HTN planning recognition and grammar constrains and
describe the parsing-based approach of (Barták, Maillard,
and Cardoso 2020) and our approach to pruning actions in
the plan suffix. Finally, we provide empirical evaluation,
which shows how the grammar constraint improved the per-
formance of parsing-based plan recognition, and conclusion.

Related works
Ramı́rez and Geffner (2009) proposed a plan recognition
approach to plan recognition of classical (non-hierarchical)
plans based on compilation to planning. Pereira, Oren, and
Meneguzzi (2017) proposed an approach based on land-
marks. Other approaches to classical plan recognition deal
for example with on-line plan recognition (Vered et al. 2018)
or epistemic plan recognition (Shvo et al. 2020).

Currently there appear to be two approaches to plan
recognition in hierarchical task networks: an approach based
on compilation to HTN planning (Höller et al. 2018) and
an approach inspired by parsing of grammars (Barták, Mail-
lard, and Cardoso 2020). Other hierarchical plan recogni-
tion approaches work with models weaker than HTN, e.g.
(Avrahami-Zilberbrand and Kaminka 2005), (Mirsky, Gal,
and Shieber 2017), or (Geib, Maraist, and Goldman 2008).

The disadvantage of the compilation-based approach
(Höller et al. 2018) is that the recognizer requires a list
of possible goals as an input, while the parsing-based ap-
proach (Barták, Maillard, and Cardoso 2020) does not re-
quire any additional knowledge apart from the description of
the planning domain and the list of objects that can appear
as parameters of tasks. However, the compilation-based ap-
proach performs better than the parsing-based approach on
instances with a high number of unobserved actions as with
increasing length of unobserved suffix, the number of pos-
sible combinations of actions increases exponentially. This
paper addresses this problem by restricting the number of
plan suffixes using the grammar constraint.

Background
HTN plan recognition
Hierarchical planning focuses on planning problems where
goals (tasks) can be hierarchically decomposed into sub-
goals (subtasks). Indecomposable (primitive) tasks are

called actions. Actions are defined by preconditions and ef-
fects. Preconditions of an action are propositions which must
be true in the state where the action is executed and effects
are propositions which will be true in the state after execu-
tion of the action.

All valid decomposition of tasks into subtasks are de-
scribed by methods (rules). A method describing decom-
position of a task T into subtasks T1, ..., Tn corresponds
to a grammar rewriting rule T → T1, ...Tn[C], where
T1, ..., Tn are either abstract or primitive tasks, C are con-
straints, and the order of subtasks may be arbitrary with re-
spect to the constraints.

There are 3 types of constraints:

• t1 ≺ t2 indicates that the last action from the decomposi-
tion of the task t1 must be executed before the first action
of the task t2;

• before(T ′, p), where T ′ is a set of tasks and p is a proposi-
tion, indicates that p must hold in the state where the first
action of the first task in the set T ′ is executed; and

• between(T ′, T ′′, p) indicates that p must be true in all
states between the execution of the last action of the tasks
in T ′ and the execution of the first action of the tasks in
T ′′.

An HTN is described by a pair w = (T,C), where T
is a set of tasks and C is a set of constraints over tasks.
An HTN plan recognition problem is defined as R =
(P, T,A,M, s0, O), where P is a set of predicates describ-
ing states, T set of abstract tasks, A set of actions, M set
of decomposition methods, s0 is an initial state and O =<
o1, ..., ok > is an observed plan prefix of length k. The aim
of plan recognition is to find a task which decomposes into
a sequence of n (k ≤ n) actions π =< o1, ..., ok, ..., on >
such that π is a valid plan applicable in s0.

The grammar constraint
Global grammar constraints are constraints which restrict
values of variables with respect to rules of a given gram-
mar. In this paper, we implement the constraint CFG pro-
posed by Quimper and Walsh (2006). A context-free gram-
mar (CFG) is a formal grammar with production rules of
the form A → α, where A is a non-terminal symbol and α
is a string of terminal and non-terminal symbols.

Quimper and Walsh (2006) proposed a constraint of
the form CFG(G,X1, ..., Xn), where X1...Xn is a string
accepted by the context-free grammar G. Given domains
of the variables X1, ..., Xn, the authors suggest polyno-
mial algorithms that enforce the generalized arc consistency.
A constraint is generalized arc consistent (GAC) if for each
value in each domain there exists a value in every other do-
main such that the constraint is satisfied.

The authors propose two algorithms for enforcing GAC
on CFG(G,X1, ..., Xn). The first algorithm is a bottom-up
propagator based on the algorithm CYK and the second one
is a top-down propagator based on the Earley-style propa-
gator. Both of them have the time complexity O(|G|n3).
The space complexity is O(|G|n2) for the CYK-based al-
gorithm and O(|G|n3) for the Earley-style propagator. In

our implementation, we used the Earley-style propagator as
translation to the Chomsky normal form is not necessary
and by the authors, top-down parsing should perform bet-
ter if the CFG accepts only few strings. In addition, the au-
thors performed experiments to compare how the efficiency
of CYK and the Earley propagator depends on the num-
ber of fixed values of variables in the grammar constraint
and the Earley propagator performed better than CYK on
instances with more fixed variables. The Earley propagator
started to outperform CYK when about half of the variables
had fixed values. As we currently work with plan recogni-
tion problems with at most 1/3 unobserved actions, we ex-
pect that the Earley propagator should perform better than
CYK.

Parsing-based HTN plan recognition
Parsing-based HTN plan recognition was proposed by
(Barták, Maillard, and Cardoso 2020). The algorithm it-
eratively extends the plan length by one in each iteration
and composes all abstract tasks which can be composed
from the available subtasks using the available methods in
the bottom-up manner, until a task which covers all observa-
tions is found.

In each iteration, the algorithm increments the plan length
and attempts to put all possible actions at the new posi-
tion at the end of the plan. As a consequence, the runtime
of the parsing-based algorithm grows exponentially with in-
creasing length of the unobserved plan suffix.

Parsing-based HTN plan recognition with the
grammar constraint

To decrease the number of actions tried in the plan suffix and
improve the performance of plan recognition with increas-
ing suffix length, we suggest to restrict plan suffixes to those
that satisfy the CFG constraint (Quimper and Walsh 2006).
By omitting constraints of methods and preconditions and
effects of actions, we get an abstraction of an HTN plan-
ning problem to a context-free grammar. Rules of an HTN
planning domain with totally ordered subtasks correspond to
production rules of a CFG. However, the constraint does not
support methods with partially ordered subtasks and inter-
leaving of actions.

The algorithm in Figure 1 describes the general idea of
parsing-based HTN plan recognition using the grammar
constraint. The algorithm keeps all composed subplans in
the set subplans. Subplans store the composed task and in-
dexes of actions from the prefix which are covered by de-
composition of the task. At the beginning, the algorithm cre-
ates k subplans from the observed actions a1, ..., ak.

In each iteration, the algorithm selects all instances of
decomposition methods which are applicable to the set
subplans. A method instance is applicable to subplans if
all subtasks of the method are available in the set subplans
and composing the head task from the subtasks does not vio-
late any constraints of the method. For each such method in-
stance, the head task is added to the set subplans. If the task
covers all observed actions in its decomposition, the task is

Function: RecognizePlan
Input: a sequence of observed actions a1, ..., ak
Output: a goal task g covering all observed actions
Variables: R – decomposition rules, A – available actions

initialize new subplans with {a1, ..., ak}
for i = k, k + 1, k + 2, ... do

while new subplans 6= ∅ do
subplans← subplans ∪ new subplans
new subplans← ∅
for all rule instances applicable to subplans do

compose new subplan from subtasks
if new subplan is valid then

if new subplan covers a1, ..., ak then
return root task of new subplan

end if
add new subplan to new subplans

end if
end for

end while
Ak+1, ..., Ai ← enforce GAC on CFG(R,X1, ...Xi)
where domain(Xj) = {aj} for j ≤ k,
domain(Xj) = A otherwise
if Ak+1 6= ∅, ..., Ai 6= ∅ then

initialize new subplans with Ak+1, ..., Ai

end if
end for

Figure 1: Parsing-based HTN plan recognition with the
grammar constraint

the desired solution. Details can be found in (Barták, Mail-
lard, and Cardoso 2020).

If the algorithm did not find any task that could cover all
observations and it is not possible to create more tasks, no
plan with the current length i exists. Therefore, the algorithm
increases the length of a plan suffix by trying to put all possi-
ble actions at the index i+1. In the i-th iteration, the original
parsing-based algorithm would proceed by adding all possi-
ble actions at the index i+1. For each possible action, a new
subplan covering the index i + 1 would be created. To de-
crease the number of generated subplans, we prune the suf-
fixes using the constraint CFG.

In the constraint CFG(R,X1, ...Xi), R is a set of all
methods in the form of rewriting rules without constraints,
andX1, ..., Xi are variables representing actions at positions
1, ..., i in the plan. If we denote the length of the observed
prefix by k, the domains of X1, ..., Xi are set as follows:
domain(Xj) = {aj} for 1 ≤ j ≤ k and domain(Xj) = A
for k < j ≤ i, where A is a set of all actions available in
the plan recognition problem. The GAC propagator prunes
the domains of variables X1, ..., Xi. If any domain is empty,
there is no valid plan for the current plan length. Otherwise,
the algorithm creates a subplan covering the j-th position of
the plan for each action in domain(Xj) for every k < j ≤ i.

For enforcing GAC on the constraint CFG, we used
the Earley propagator. The complete algorithm for enforc-
ing GAC on the constraint CFG can be found in (Quimper
and Walsh 2006). In the following text, we describe how we

used the algorithm for HTN plan recognition.
The aim of the propagator is to find a task which de-

composes into the observed prefix and a suffix of the de-
sired length. State space consists of states representing par-
tially decomposed rules. Consider the state s = (T1 →
T2...Tr •Ts...Tt, j, S). This state represents a method which
decomposes the task T1 to the subtasks T2, ..., Tt. The sym-
bol • separates the subtasks that were already processed
from the rest. The set S contains supports for the already de-
composed subtasks, i.e., the actions in the suffix into which
these subtasks decompose. At the end, the pruned domains
of X1, ..., Xi will comprise the supports of all tasks that can
be decomposed into a plan with the given length and prefix.

Earley parser uses 3 procedures to process states: com-
pleter, scanner, and predictor. A fully decomposed rule, e.g.
(T1 → T2...Tm•, j, S), is processed by completer. This
state represents a possible decomposition of the task T1 into
the subtasks T2, ..., Tm, which covers a subsequence of ac-
tions starting at index j. Completer will use this decompo-
sition to decompose subtask T1 in the rules in which sub-
task T1 starting at index j is the next unprocessed subtask.
A rule, where the next unprocessed subtask is an action, e.g.
(T1 → T2... • am..., j, S), will be processed by scanner.
Let it be the index of the current iteration of the propagator.
Then this rule already covers actions between indexes j and
it, so scanner checks whether am is available at index it+1.
Predictor processes states, where the next unprocessed sub-
task is an abstract task, e.g. (T1 → T2... • Tm..., j, S). In
iteration it, predictor uses all possible rules to decompose
Tm into a subsequence of actions starting at index it.

Empirical evaluation
We have compared the original parsing-based approach on
the domains1 and plans2 from the International planning
competition 2020. We used totally ordered domains monroe
(fully observable), transport, towers, blocksworld and satel-
lite. All experiments were run on a computer with the Intel
Core i7-11370H @ 3.30GHz processor and 16 GB of RAM.
Maximum allowed runtime was limited to 15 minutes.

For a plan of length n, we created n/3 test instances
(plan prefixes) by deleting 1 to n/3 actions from the end
of the plan. This resulted in 351 instances for the do-
main monroe, 225 for satellite, 8,944 for transport, 2,734
for blocksworld, and 55,879 for towers. With the given re-
sources, both recognizers were able to solve only simpler
instances with shorter prefixes. The problems usually had in-
creasing difficulty, so we stopped testing on a domain when
the recognizers failed to solve about 100 problems in a row.

Table 1 compares the total number of problems from dif-
ferent domains solved by the original parsing-based recog-
nizer and by our approach with pruning using the grammar
constraint. Pruning has significantly improved the perfor-
mance of parsing-based plan recognition in 3 domains: mon-
roe, satellite and transport. In the domains blocksworld and
towers, neither of the recognizers could solve more than 2
problems.

1https://github.com/panda-planner-dev/ipc2020-domains
2https://github.com/panda-planner-dev/ipc2020-plans

domain original recognizer with pruning
monroe 0 46
satellite 108 133
transport 13 23

blocksworld 1 2
towers 2 2

Table 1: Number of solved problems in each domain.

suffix length 1 2 3 4 5 6 7 8
solved problems 9 9 6 6 5 3 3 2

Table 2: Number of problems solved with pruning in the do-
main monroe.

Table 3 compares the average number of actions that were
tried for problems in each domain by each recognizer until
either a solution was found or until the recognizer ran out of
time or memory. In the domains monroe, satellite and trans-
port, pruning was effective in improving the performance of
the recognizer. It seems that a more effective pruning algo-
rithm could further improve the performance, especially in
the domain monroe, where the number of tried actions is
still very high for the unsolved problems. Although prun-
ing could decrease the number of tried actions also in other
domains, it did not result in better performance.

In the domains satellite and transport, plan recognition
with pruning still did not solve any problem with unobserved
suffix longer than 2. Figures 2 and 4 compare the total num-
ber of actions tried by both recognizers for the problems that
were solved by both recognizers. In both domains, pruning
could significantly reduce the total number of actions. Fig-
ures 3 and 5 show how pruning affected the runtimes. In
the domain monroe, our approach was able to solve some
problems with suffix length up to 8 (see Table 2).

Conclusion
In this paper, we have shown how parsing-based HTN
plan recognition can be improved by pruning actions us-
ing the grammar constraint. Our empirical evaluation has
shown that enforcing GAC on the grammar constraint for
the CFG abstraction of a planning problem effectively re-
duces the number of actions in a plan suffix. In some of
the domains, the pruning has considerably improved the per-
formance of the recognizer.

Future work could focus on developing even more ef-
fective pruner as in some domains, the recognizer could
profit from further reduction of actions. However, in other
domains, pruning of actions has not led to a better per-
formance. Therefore, it seems to be necessary to decrease
the number of subplans created in each iteration in order to
improve the performance of HTN plan recognition.

Acknowledgments
Research is supported by the Charles University, project GA
UK number 156121 and by TAILOR, a project funded by
EU Horizon 2020 research and innovation programme under
GA No 952215.

domain original recognizer with pruning
solved unsolved solved unsolved

monroe – 1,063,166 291 61,306
satellite 147 519 6 15
transport 605 776 43 158

blocksworld 61 89 3 44
towers 711 6,666 79 1,460

Table 3: Average number of actions tried by each recognizer
until either a solution was found or until the recognizer ran
out of time or memory. Considers only the cases where a rec-
ognizer reached at least the second iteration.

Figure 2: Number of new
actions created by each
recognizer in the domain
satellite (logarithmic
scale).

Figure 3: Runtimes of
each recognizer in the do-
main satellite (logarithmic
scale).

Figure 4: Number of new
actions created by each
recognizer in the domain
transport (logarithmic
scale).

Figure 5: Runtimes of each
recognizer in the domain
transport (logarithmic
scale).

References
Avrahami-Zilberbrand, D., and Kaminka, G. A. 2005. Fast
and complete symbolic plan recognition. In Proceedings of
the Twenty-Fourth International Joint Conference on Artifi-
cial Intelligence, 653–658.
Barták, R.; Maillard, A.; and Cardoso, R. C. 2020. Parsing-
based approaches for verification and recognition of hierar-
chical plans. In The AAAI 2020 Workshop on Plan, Activity,
and Intent Recognition.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complexity
Results for HTN Planning. Annals of Mathematics and AI
18(1):69–93.
Geib, C. W.; Maraist, J.; and Goldman, R. P. 2008. A
new probabilistic plan recognition algorithm based on string
rewriting. In Proceedings of the 18th International Confer-
ence on Automated Planning and Scheduling, 91–98.
Ha, E.; Rowe, J.; Mott, B.; and Lester, J. 2011. Goal recogni-
tion with markov logic networks for player-adaptive games.
In Proceedings of the seventh AAAI Conference on Artifi-
cial Intelligence and Interactive Digital Entertainment, vol-
ume 6.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2018.
Plan and goal recognition as HTN planning. In 2018 IEEE
30th International Conference on Tools with Artificial Intel-
ligence, 466–473.
Kaminka, G. A.; Pynadath, D. V.; and Tambe, M. 2002.
Monitoring teams by overhearing: A multi-agent plan-
recognition approach. Journal of artificial intelligence re-
search 17:83–135.
Li, T.; Liu, Y.; Liu, Y.; Xiao, Y.; and Nguyen, N. A. 2020.
Attack plan recognition using hidden Markov and proba-
bilistic inference. Computers & Security 97:101974.
Mirsky, R.; Gal, Y.; and Shieber, S. M. 2017. CRADLE: an
online plan recognition algorithm for exploratory domains.
ACM Transactions on Intelligent Systems and Technology
8(3):1–22.
Niu, W.; Long, J.; Han, D.; and Wang, Y.-F. 2004. Human
activity detection and recognition for video surveillance. In
Proceedings of the 2004 IEEE International Conference on
Multimedia and Expo (ICME), volume 1, 719–722.
Pereira, R. F.; Oren, N.; and Meneguzzi, F. 2017. Landmark-
based heuristics for goal recognition. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence,
3622–3628.
Quimper, C.-G., and Walsh, T. 2006. Global gram-
mar constraints. In Principles and Practice of Constraint
Programming-CP 2006: 12th International Conference, CP
2006, Nantes, France, September 25-29, 2006. Proceedings
12, 751–755. Springer.
Ramı́rez, M., and Geffner, H. 2009. Plan recognition as
planning. In Proceedings of the twenty-first International
Joint Conference on Artifical Intelligence, 1778–1783.
Shvo, M.; Klassen, T. Q.; Sohrabi, S.; and McIlraith, S. A.
2020. Epistemic plan recognition. In Proceedings of the
19th International Conference on Autonomous Agents and
MultiAgent Systems, 1251–1259.

Vered, M.; Pereira, R. F.; Kaminka, G.; and Meneguzzi, F. R.
2018. Towards online goal recognition combining goal mir-
roring and landmarks. In Proceedings of the 19th Interna-
tional Conference on Autonomous Agents and Multiagent
Systems, 2112–2114.

