
On the Verification of Totally-Ordered HTN Plans
Roman Barták, Simona Ondrčková

Faculty of Mathematics and Physics
Charles University

Prague, Czech Republic
{bartak,ondrckova}@ktiml.mff.cuni.cz

Gregor Behnke
Faculty of Engineering
University of Freiburg

Freiburg, Germany
behnkeg@informatik.uni-freiburg.de

Pascal Bercher
School of Computing

The Australian National University
Canberra, Australia

pascal.bercher@anu.edu.au

Abstract—Verifying HTN plans is an intractable problem with
two existing approaches to solve the problem. One technique is
based on compilation to SAT. Another method is using parsing,
and it is currently the fastest technique for verifying HTN plans
and the only technique supporting state constraints. In this
paper, we propose an extension of the parsing-based approach to
verify totally-ordered HTN plans more efficiently. This problem
is known to be tractable if no state constraints are included, and
we show theoretically and empirically that the modified parsing
approach achieves better performance than the currently fastest
HTN plan verifier when applied to totally-ordered HTN plans.

Keywords-hierarchical planning, HTN, verification, parsing,
total-order

INTRODUCTION

Plan verification is about finding if a given action sequence
forms a correct plan according to a given planning domain
model. For classical plans, the verification problem consists
of checking if the action sequence is executable starting with
the initial state and checking if the goal condition is satisfied
in the final state [1]. For hierarchical plans, plan verification
additionally requires that the action sequence can be obtained
by decomposition of some task. A specific root task, which
decomposes to the action sequence, might also be given to
describe the goal task.

There exist two approaches to hierarchical plan verification.
One uses a translation of the verification problem into a
Boolean satisfiability problem [2]. The second uses parsing
and it supports state constraints [3], [4]. The hierarchical plan-
ning domain model can be seen as a formal grammar [5]–[7]
and the plan verification problem is then similar to checking
if a word (action sequence) belongs to the language generated
by the grammar, which can be done by parsing. Parsing does
not require information about the goal task – the method finds
any task that decomposes to the action sequence, which makes
it appropriate also for plan and task recognition [8].

The parsing-based approach seems to be significantly faster
than the SAT-based approach [4]. Nevertheless, both ap-
proaches struggle from the combinatorial explosion and, de-
pending on the domain; they can verify plans of lengths up to
a few dozens of actions. This is not surprising as the problem
of verifying hierarchical plans is NP-hard [9], [10] and hence
computationally expensive. This holds for general hierarchical
plans with task interleaving and the partial order of tasks.
However, as can be seen from the International Planning

Competition 2020 on HTN planning, many domain models
contain totally-ordered tasks. Further, there is a significant
body of research dedicated to totally-ordered HTN planning
in particular [11]–[20]. Reasoning about totally ordered plans
is computationally at most as hard as reasoning about to-
tally ordered ones (and often much easier), which is due
to limited interaction of actions/tasks. This is both the case
in hierarchical as well as in non-hierarchical planning [21]–
[24]. Plan verification is no exception: Verifying a totally-
ordered problem without state constraints is known to be
tractable, whereas its partially ordered counter-part is still NP-
hard [9]. Nevertheless, no hierarchical plan verifier exploits
this theoretical result, and no generalisation to problems with
state constraints exists.

We propose an extension of the parsing-based verification
algorithm [4] to work faster for totally-ordered domain models.
While the CYK algorithm [25] for parsing context-free gram-
mars appears to be applicable here at first glance, this is not
the case. Totally-ordered models can contain state constraints,
which cannot, to our current knowledge, be compiled or
handled by the CYK algorithm. Our primary modification is
in handling precedence relations in the totally-ordered setting.
The extended algorithm still works for arbitrary partially
ordered hierarchical plans. It detects if the model uses totally-
ordered tasks, and then uses a more strict formulation of
precedence constraints, which decreases the number of gener-
ated tasks significantly. The algorithm works in a bottom-up
fashion starting with a given action sequence ā. It terminates
once a compound task is found that can be decomposed into
ā. Apart from other work on plan verification, our approach
is loosely related to another that aims at computing abstract
plans that are maximally abstract while still allowing to
generate a non-redundant plan [26]. The proposed algorithm
also performs a bottom-up approach, though it requires a
specific decomposition rather than the entire model.

HTN PLAN VERIFICATION BY PARSING

We use the STRIPS model of actions [27] based on propo-
sitional logic. Let P be a set of propositions describing
properties of world states. Then, a world state is modeled
as a set S ⊆ P of propositions that are true in that state
(every other proposition is false). Each action a is modeled by
three sets of propositions (pre(a), eff+(a), eff−(a)), where
pre(a), eff+(a), eff−(a) ⊆ P and eff+(a)∩eff−(a) = ∅.



The set pre(a) describes positive preconditions of action a.
These propositions must be true right before the action a.
Action a is applicable to state S iff pre(a) ⊆ S. Sets eff+(a)
and eff−(a) describe the positive and negative effects of
action a. These propositions will become true or false in
the state right after executing the action a. If an action a is
applicable to state S then the state right after the action a is:

γ(S, a) = (S \ eff−(a)) ∪ eff+(a).

γ(S, a) is undefined if action a is not applicable to state S.
We say that an action sequence (a1, . . . , an) is executable with
respect to a given initial state S0 if the precondition of each
action is satisfied in the state right before it:

pre(ai) ⊆ γ(γ(. . . γ(S0, a1), . . .), ai−1).

Hierarchical Task Network Planning [23] was proposed as a
planning framework that includes control knowledge as recipes
for solving specific tasks. The recipe is modeled using a task
network – a set of sub-tasks to solve the task and a set (a
conjunction) of constraints between the sub-tasks. Let T be
a compound task and ({T1, ..., Tk}, C) be a task network,
where C are its constraints (see later). We can describe
the decomposition method as a rewriting rule saying that T
decomposes to sub-tasks T1, ..., Tk under the constraints C:

T → T1, ..., Tk [C]

The order of sub-tasks in the rule does not matter (opposite to
rewriting rules in grammars) as the precedence constraints in
C explicitly describe the order. If the tasks T1, ..., Tk in each
method are totally ordered, then we speak about a totally-
ordered HTN model.

HTN planning problems are specified by an initial state
S0 and an initial task representing the goal. This goal task
needs to be decomposed via decomposition methods until a
set of primitive tasks – actions – is obtained. These actions
must be totally ordered and satisfy all the constraints obtained
during decompositions. The obtained plan (a1, . . . , an) must
be executable with respect to S0. The state right after the
action ai is denoted Si. We denote the set of actions to
which a task T decomposes as act(T ). If U is a set of tasks,
we define act(U) = ∪T∈Uact(T ). The index of the first
action in the decomposition of T is denoted start(T ), that is,
start(T ) = min{i|ai ∈ act(T )}. Similarly, end(T ) means
the index of the last action in the decomposition of T , that is,
end(T ) = max{i|ai ∈ act(T )}.

The decomposition constraints for a method T → T1, ..., Tk
can be of the following three types, where the first is also
known as an ordering constraint and the latter two are essen-
tially state constraints (U, V, {t1, t2} ⊆ {T1, ..., Tk}):
• t1 ≺ t2: a precedence constraint meaning that in every

plan the last action obtained from task t1 is before the
first action obtained from task t2, end(t1) < start(t2),

• before(p, U): a precondition constraint meaning that in
every plan the proposition p holds in the state right before
the first action obtained from tasks U , p ∈ Sstart(U)−1,

• between(U, p, V ): a prevailing constraint meaning that
in every plan the proposition p holds in all the states
between the last action obtained from tasks U and the
first action obtained from tasks V ,
∀i ∈ {end(U), . . . , start(V )− 1}, p ∈ Si.

The HTN plan verification problem is formulated as follows:
Given a sequence of actions (a1, a2, . . . , an) and an initial
state S0, is the sequence of actions executable with respect to
S0 and obtained from some compound task?

Algorithm 1 presents the recent parsing-based approach to
HTN plan verification [4] extended with the check of total-
order constraints at line 13 (see the next section). The set ≺
represents the precedence constraints of the method, bef is
the set of before constraints, and btw is the set of between
constraints. Executability of the action sequence is verified at
lines 2-5. The while loop (lines 7-26) groups actions/tasks
into compound tasks by using the methods from the model
until it finds a task T0 such that act(T0) = {a1, a2, . . . , an}
(line 26, the plan is valid) or it constructs all possible tasks
that decompose to a subset of actions in the plan (line 27, the
plan is invalid). The sets act(T ) are represented using Boolean
vectors I (I(j) = 1 ⇔ aj ∈ act(T )). These vectors are used
to check that each action is generated from one task only (line
19). Indexes bj and ej for task Tj describe values start(Tj)
and end(Tj) respectively. They are used when checking the
decomposition constraints.

TOTALLY-ORDERED HTNS

The parsing-based verification algorithm may generate an
exponential number of pairs (T, act(T )), where T is a task
and act(T ) is a subset of actions from the plan that can
be generated from the task T . This is because actions from
different tasks may interleave in the plan, and hence we
must assume subsets act(T ) of actions from the plan when
composing the tasks T . There is an exponential number of
such sets with respect to the length of the plan. However, when
the domain model is totally ordered, then the sets act(T ) form
contiguous sub-sequences of actions (Figure 1).

Proposition 1. For a totally ordered HTN domain model, each
task decomposes to a contiguous sub-sequence of actions in
the plan.

Proof: Assume a pair of different tasks T and T ′ used
in the decomposition of some goal task Tg to a sequence
of actions such that T and T ′ are not descendants of each
other. There must exists a common ancestor task Ta for
tasks T and T ′ in the decomposition tree and a method
Ta → T1, ..., Tk [C] used for the decomposition. Let the
task T be obtained from the sub-task Ti and T ′ be obtained
from the sub-task Tj . As the domain model is totally-ordered,
without loss of generality, we may assume that Ti ≺ Tj and
hence end(Ti) < start(Tj). As T is a sub-task of Ti, we know
end(T ) ≤ end(Ti) and similarly start(Tj) ≤ start(T ′). To-
gether we get end(T ) < start(T ′). Hence for any pair of non
descendant tasks T and T ′, it holds either end(T ) < start(T ′)



or end(T ′) < start(T ), which means that the tasks do not
interleave in the plan.

We can exploit this property when verifying plans for
totally-ordered domain models as follows. Assume a decompo-
sition method T → T1, ..., Tk [C] in a totally-ordered domain
model. Then it holds ∀i ∈ {1, . . . , k − 1} : Ti ≺ Ti+1.
We call these precedence constraints direct precedences to
distinguish them from classical precedence relations. Note
that it is easy to detect automatically, if the domain model
is totally ordered, for example, by using a transitive closure
of precedence relations in the decomposition methods and
verifying that sub-tasks in the method are totally ordered. The

Data: a plan P = (a1, ..., an), an initial state S0, and a
set of decomposition methods (domain model);
TO = true if the domain is totally ordered,

Result: true if the plan can be derived from some
compound task, false otherwise

1 Function VERIFYPLAN
2 for i = 1 to n do
3 if ¬(pre(ai) ⊆ Si−1) then
4 return false
5 Si = (Si−1 \ eff−(ai)) ∪ eff+(ai)

6 sp← ∅; new← {(Ai, i, i, Ii) |i ∈ 1..n}
Data: Ai is a primitive task corresponding to action

ai, Ii is a Boolean vector of size n, such that
∀i ∈ 1..n, Ii(i) = 1, ∀j 6= i, Ii(j) = 0

7 while new 6= ∅ do
8 sp← sp∪new; new← ∅
9 foreach decomposition method R of the form

T0 → T1, ..., Tk [≺,bef,btw] such that
{(Tj , bj , ej , Ij)|j ∈ 1..k} ⊆ sp do

10 if ∃(i, j) ∈ ≺ : ¬(ei < bj) then
11 continue with the next method
12 if TO ∧ ∃i : ¬(ei + 1 = bi+1) then
13 continue with the next method
14 b0 ← min{bj |j ∈ 1..k}
15 e0 ← max{ej |j ∈ 1..k}
16 for i = 1 to n do
17 I0(i)←

∑k
j=1 Ij(i);

18 if I0(i) > 1 then
19 continue with the next method
20 if ∃(p, U) ∈ bef : p 6∈ Smin{bj |j∈U}−1 then
21 continue with the next method
22 if ∃(U, p, V ) ∈ btw ∃i ∈ max{ej |j ∈

U}, . . . ,min{bj |j ∈ V } − 1 : p 6∈ Si then
23 continue with the next method
24 new← new∪{(T0, b0, e0, I0)}
25 if ∀k, I0(k) = 1 then
26 return true

27 return false
Algorithm 1: Parsing-based HTN plan verification

T1 T2 T1 T2

start(T1)
start(T2)

end(T1)
end(T2)

start(T1)
start(T2)

end(T1)
end(T2)

Fig. 1. Task interleaving (left) vs. totally ordered (right).

direct precedence relation Ti ≺ Ti+1 means that the last action
of task Ti is right before the first action of task Ti+1. This
is a consequence of Proposition 1. Task T decomposes to a
contiguous action sequence P . Each of its sub-tasks Ti also
decomposes to a contiguous action sequence and these sub-
sequences are ordered as end(Ti) < start(Ti+1). Together
these sub-sequences must form the sequence P without any
gap. Hence, the direct precedence relation imposes a more
strict constraint

end(Ti) + 1 = start(Ti+1). (1)

Note that the above claim also holds in the reverse order.
Suppose we impose the above ordering constraint (1) for direct
precedence relations in all decomposition methods. In that
case, the tasks decompose to contiguous sequences of actions
as no action can be inserted between any pair of directly
following tasks.

The extended HTN plan verification algorithm (Algo-
rithm 1) checks the direct precedence constraints for totally-
ordered domain models at line 13. This extension gives the
theoretical guarantee on the number of generated tasks.

Proposition 2. Let t be the number of tasks in the totally-
ordered HTN domain model and n be the number of actions
in a plan. Then the extended HTN plan verification algorithm
generates at most O(t× n2) different pairs (T, act(T )).

Proof: For totally ordered domain models, the sets
act(T ) form contiguous sub-sequences of the plan. These sub-
sequences are identified by the first and the last actions in
the sequence, and hence there are at most O(n2) such sets.
The same set of actions may be generated from different
tasks; hence the maximal number of different pairs (T, act(T ))
that the parsing-based verification algorithm may generate is
O(t× n2).

Note that if the original verification algorithm is applied to
totally-ordered domain models, then it may still generate an
exponential number of pairs (T, act(T )) because the algorithm
allows sets act(T ) to be arbitrary subsets of actions in the plan.
The experimental study confirms this.

EMPIRICAL EVALUATION

We compared the recent HTN plan verification algorithm [4]
with its extended version that detects totally-ordered domain



models and imposes constraints (1) to check the direct prece-
dence constraints used in decomposition methods. Compared
to previous evaluations, we significantly increased the number
of considered instances. The International Planning Competi-
tion (IPC) 2020 has released an extensive set of plans1 that
were generated by the planners in the IPC on the IPC do-
mains2. We are using the set of totally-ordered plans provided
by the IPC, that is, all plans in our evaluation are totally-
ordered. This set contains 10963 plans with an average length
of 239 actions and a maximum length of 131071 actions.

Both the original verifier [4] and the modifications presented
in this paper were implemented in C# 7 (from .NET 4.7).
For running the program, we used mono in version 6.8.0.105
on a singularity container based on Ubuntu 20.10. We ran all
experiments on an Intel Xeon Gold 6242 CPU (2.80GHz) with
5GB of RAM and a timeout of 10 minutes. The memory limit
was never reached.

new
old

100

101

102

0 1375 2750 4125 5500 6875 8250 9625 11000

ru
nt

im
e

in
se

co
nd

s

solved instances

Fig. 2. The number of solved problems per time.

10−1 100 101 102
10−1

100

101

102

TLE

TLE

ne
w

ru
nt

im
e

in
se

co
nd

s

old runtime in seconds

Fig. 3. Direct comparison of runtimes.

The summary results are presented in Figure 2 showing the
number of solved instances within a given time. The new
approach solves a significantly larger number of instances

1https://github.com/panda-planner-dev/ipc-2020-plans
2https://github.com/panda-planner-dev/ipc2020-domains

100 101 102 103 104
10−1

100

101

102

TLE

ru
nt

im
e

in
se

co
nd

s

length of the plan

Fig. 4. Runtime of the original algorithm as a function of plan length. Plans
with more than 10.000 actions were omitted.

100 101 102 103 104
10−1

100

101

102

TLE

ru
nt

im
e

in
se

co
nd

s

length of the plan

Fig. 5. Runtime of the extended algorithm as a function of plan length. Plans
with more than 10.000 actions were omitted.

(8870) than the original approach (2443). Any instance solved
by the original approach was also solved by the new approach,
while the new approach solved 6427 instances more. Figure 3
presents the direct comparison of both techniques using the
same data. Each point represents one of the 2443 problem
instances solved by both approaches. The runtimes of the
algorithms define the coordinates of the point. Of these 2443
instances, the old approach is faster in 362 instances. Of
these 362, only 159 have a runtime of more than one second.
For these 362 instances, the old algorithm is faster than the
new one by more than 10% in only 24 instances and at
the most only 25% faster. The minor overhead of the new
algorithm seems not to incur a significant disadvantage. For
210 instances, the runtime is identical, and for the remaining
1871 instances solved by both verifiers, the runtime of the new



one is faster. The reduction in runtime on these 1871 instances
is on average 46.36% with a maximum of 99.93%.

Figures 4 and 5 show the dependence of runtime on plan
length for the original and extended algorithm, respectively.
Again, it is clearly visible that the new method solves a larger
number of instances. The new approach can verify about one
order of magnitude longer plans than the original algorithm.
The longest verified plan for the old technique has 1500
actions, while for the new one has 4095 actions.

CONCLUSIONS

We proposed extending the HTN plan verification algorithm
to impose a more strict constraint describing direct precedence
relations for totally-ordered models. The effect of this modi-
fication on the runtime of the algorithm is dramatic. The new
algorithm verifies a much larger number of problem instances
and also longer plans. As totally-ordered HTN domain models
are frequent in practical applications, the method brings auto-
mated HTN plan verification closer to practical applicability
on non-trivial plans and domains.

ACKNOWLEDGMENT

Research was supported by the joint Czech-German project
registered under the number 21-13882J by the Czech Sci-
ence Foundation (GAČR) and 452150823. by Deutsche
Forschungsgemeinschaft (DFG). Simona Ondrčková is (par-
tially) supported by SVV project number 260 575.

REFERENCES

[1] R. Howey and D. Long, “VAL’s Progress: The Automatic Validation
Tool for PDDL2.1 used in the Int. Planning Competition,” in Proc.
of the ICAPS’03 Workshop on the Competition: Impact, Organization,
Evaluation, Benchmarks, 2003.

[2] G. Behnke, D. Höller, and S. Biundo, “This is a solution! (... but is
it though?) - verifying solutions of hierarchical planning problems,” in
Proc. of the 27th Int. Conf. on Automated Planning and Scheduling
(ICAPS 2017). AAAI Press, 2017, pp. 20–28.

[3] R. Barták, A. Maillard, and R. C. Cardoso, “Validation of hierarchical
plans via parsing of attribute grammars,” in Proc. of the 28th Int. Conf.
on Automated Planning and Scheduling (ICAPS 2018). AAAI Press,
2018, pp. 11–19.

[4] R. Barták, S. Ondrčková, A. Maillard, G. Behnke, and P. Bercher, “A
novel parsing-based approach for verification of hierarchical plans,” in
Proc. of the 32nd Int. Conf. on Tools with AI (ICTAI 2020). IEEE,
2020, pp. 118–125.

[5] D. Höller, G. Behnke, P. Bercher, and S. Biundo, “Language classifica-
tion of hierarchical planning problems,” in Proc. of the 21st European
Conf. on AI (ECAI 2014). IOS Press, 2014, pp. 447–452.

[6] D. Höller, G. Behnke, P. Bercher, and S. Biundo, “Assessing the
expressivity of planning formalisms through the comparison to formal
languages,” in Proc. of the 26th Int. Conf. on Automated Planning and
Scheduling (ICAPS 2016). AAAI Press, 2016, pp. 158–165.

[7] R. Barták and A. Maillard, “Attribute grammars with set attributes and
global constraints as a unifying framework for planning domain models,”
in Proc. of the 19th Int. Symposium on Principles and Practice of
Declarative Programming (PPDP 2017). ACM, 2017, pp. 39–48.

[8] M. Vilain, “Getting serious about parsing plans: A grammatical analysis
of plan recognition,” in Proc. of the 8th National Conf. on AI (AAAI
1990). AAAI Press, 1990, pp. 190–197.

[9] G. Behnke, D. Höller, and S. Biundo, “On the complexity of HTN plan
verification and its implications for plan recognition,” in Proc. of the
25th Int. Conf. on Automated Planning and Scheduling (ICAPS 2015).
AAAI Press, 2015, pp. 25–33.

[10] P. Bercher, D. Höller, G. Behnke, and S. Biundo, “More than a name?
on implications of preconditions and effects of compound HTN planning
tasks,” in Proc. of the 22nd European Conf. on AI (ECAI 2016). IOS
Press, 2016, pp. 225–233.

[11] C. Olz, S. Biundo, and P. Bercher, “Revealing hidden preconditions and
effects of compound htn planning tasks – a complexity analysis,” in
Proc. of the 35th AAAI Conf. on AI (AAAI 2021). AAAI Press, 2021,
pp. 11 903–11 912.

[12] G. Behnke and D. Speck, “Symbolic search for optimal total-order HTN
planning,” in Proc. of the 35th AAAI Conf. on AI (AAAI 2021). AAAI
Press, 2021, pp. 11 744–11 754.

[13] G. Behnke, “Block compression and invariant pruning for SAT-based
totally-ordered HTN planning,” in Proc. of the 31st Int. Conf. on
Automated Planning and Scheduling (ICAPS 2021). AAAI Press, 2021,
pp. 25–35.

[14] S. Lin and P. Bercher, “Change the world – how hard can that be? on
the computational complexity of fixing planning models,” in Proc. of the
30th Int. Joint Conf. on AI (IJCAI 2021). IJCAI, 2021, pp. 4152–4159.

[15] D. Höller, “Translating totally ordered HTN planning problems to
classical planning problems using regular approximation of context-
free languages,” in Proceedings of the 31st International Conference
on Automated Planning and Scheduling (ICAPS 2021). AAAI Press,
2021, pp. 159–167.

[16] D. Schreiber, T. Balyo, D. Pellier, and H. Fiorino, “Tree-REX: SAT-
based tree exploration for efficient and high-quality HTN planning,” in
Proc. of the 29th Int. Conf. on Automated Planning and Scheduling
(ICAPS 2019). AAAI Press, 2019, pp. 382–390.

[17] G. Behnke, D. Höller, and S. Biundo, “totSAT – Totally-ordered
hierarchical planning through SAT,” in Proc. of the 32nd AAAI Conf.
on AI (AAAI 2018). AAAI Press, 2018, pp. 6110–6118.

[18] R. Alford, U. Kuter, and D. Nau, “Translating HTNs to PDDL: A small
amount of domain knowledge can go a long way,” in Proc. of the 21st
Int. Joint Conf. on AI (IJCAI 2009). AAAI Press, 2009, pp. 1629–1634.

[19] B. Marthi, S. Russell, and J. Wolfe, “Angelic semantics for high-level
actions,” in Proc. of the 17th Int. Conf. on Automated Planning and
Scheduling (ICAPS 2007). AAAI Press, 2007, pp. 232–239.

[20] D. Nau, Y. Cao, A. Lotem, and H. Munoz-Avila, “SHOP: Simple
hierarchical ordered planner,” in Proc. of the 16th Int. Joint Conf. on AI
(IJCAI 1999), 1999, pp. 968–973.

[21] R. Alford, P. Bercher, and D. Aha, “Tight bounds for HTN planning,”
in Proc. of the 25th Int. Conf. on Automated Planning and Scheduling
(ICAPS 2015). AAAI Press, 2015, pp. 7–15.

[22] ——, “Tight bounds for HTN planning with task insertion,” in Proc. of
the 25th Int. Joint Conf. on AI (IJCAI 2015). AAAI Press, 2015, pp.
1502–1508.

[23] K. Erol, J. A. Hendler, and D. S. Nau, “Complexity Results for HTN
Planning,” Annals of Mathematics and AI, vol. 18, no. 1, pp. 69–93,
1996.

[24] P. Bercher, “A closer look at causal links: Complexity results for delete-
relaxation in partial order causal link (POCL) planning,” in Proceed-
ings of the 31st International Conference on Automated Planning and
Scheduling (ICAPS 2021). AAAI Press, 2021, pp. 36–45.

[25] I. Sakai, “Syntax in universal translation,” in Proc. of the 1961 Int. Conf.
on Machine Translation of Languages and Applied Language Analysis,
1962, pp. 593–608.

[26] L. de Silva, L. Padgham, and S. Sardina, “HTN-like solutions for
classical planning problems: An application to bdi agent systems,”
Theoretical Computer Science, vol. 763, pp. 12–37, 2019.

[27] R. E. Fikes and N. J. Nilsson, “STRIPS: A new approach to the
application of theorem proving to problem solving,” in Proc. of the
2nd Int. Joint Conf. on AI (IJCAI 1971), 1971, pp. 608–620.


