
On Semantics of Hierarchical Planning Domain
Models with Decomposition Constraints and Empty

Methods
Simona Ondrčková, Roman Barták

Charles University, Faculty of Mathematics and Physics
Prague, Czech Republic

{ondrckova,bartak}@ktiml.mff.cuni.cz

Abstract—There are multiple formalisms describing hierarchi-
cal planning domain models, however many of them do not show
semantics of some features such as empty decomposition methods
and extensive constraints. In this short paper we describe the
semantics of a hierarchical domain model with these extensive
constraints and show how empty decomposition methods would
work within it. We also compare this model with other models
and present some transformations of model properties.

Index Terms—planning, hierarchical models, semantics, trans-
formations

I. INTRODUCTION

Planning focuses on selecting and organizing actions into
a sequence (plan) to achieve a specific goal from a given
initial state. Hierarchical planning is a form of planning that
is similar to how people solve complex problems. It is based
on idea of decomposing complex tasks to simpler sub-tasks
until obtaining primitive executable tasks (actions). The task
decomposition may contain additional constrains such as task
ordering and state conditions. Hierarchical planning is used
for example in robotics [1], automated assistance [2], and
machine learning [3]. Reverse process to hierarchical planning
is hierarchical plan verification. The task is to verify whether a
given action sequence is a valid hierarchical plan. This means
that the action sequence is executable (action preconditions
are satisfied in respective states) and it can be obtained by
decomposing the goal task (solves the required problem).

There exists a variety of formalisms for hierarchical plan-
ning domain models, however not all of them show how
to handle empty decomposition methods (the task is already
achieved and hence it decomposes to nothing) or they do not
use extensive constraints (like the prevailing condition). The
three formalisms we will focus on in this paper are: Textbook
formalism [4], Erol formalism [5], and the HDDL formalism
[6] (names given by us). The Textbook formalism will be
described in detail in Section III as it shows the extensive
state constraints (see Section II). The Erol formalism was the
original hierarchical task network formalism that inspired oth-
ers. The HDDL formalism is an extension to PDDL (Planning
Domain Description Language) for expressing hierarchical
planning problems. It is currently widely used for example
in planning competitions. There is also a formalism by Geier
et al. [7] but it does not support the extensive constraints (the

original version also does not support empty methods). We will
present a formalism that handles them and empty methods and
compare it with the three formalisms we mentioned.

II. FORMAL BACKGROUND

We use the STRIPS model [8] of actions for hierarchical
planning [9], [10]. Let P be a set of propositions describing
properties of the world. Then a world state is modeled using a
set of propositions that are true in that state (and every other
proposition is false in that state). Each action is given by a tu-
ple (pre+(a), pre−(a), eff+(a), eff−(a)), where pre+(a),
pre−(a), eff+(a), eff−(a) ⊆ P . Positive (negative) precon-
ditions are preconditions that must (cannot) be true in the state
for the action to be applicable. Formally action a is applicable
to state s if pre+(a) ⊆ s and pre−(a) ∩ s = ∅. The last two
sets represent the effects of an action. The state after applying
action a to state s looks like this: (s \ eff−(a)) ∪ eff+(a).

Deliver(T,P,L1,L2)

Get-To(T,L1) Get-To(T,L2)pick-up(T,P,L1) drop-off(T,P,L2)

Fig. 1. Example of task decomposition for task Deliver

A compound task describes an activity that can be further
decomposed into sub-tasks (compound tasks or actions). This
is described using a decomposition method (Fig. 1). A task
may have multiple decomposition methods. A decomposition
method for a task T decomposing to sub-tasks T1, ..., Tk under
the constraints C can be modeled as a rewriting rule T →
T1, ..., Tk [C]. The order of sub-tasks is irrelevant as it is
described explicitly in C. If sub-tasks in all methods are totally
ordered then the domain is called totally-ordered.

Let U , V be subsets of tasks from T1,...,Tk or T in which
case the set contains all sub-tasks. We will use constraints as
in the Textbook formalism [4]:

• Ti ≺ Tj : an ordering constraint meaning that task Ti is
before task Tj .

• before(p, U): a precondition constraint meaning that in
every plan, the proposition p holds in the state right before
the first action to which set U decomposes.



• after(p, U): a postcondition constraint meaning that in
every plan, the proposition p holds in the state right after
the last action to which set U decomposes.

• between(U, p, V ): a prevailing constraint such that in
every plan, the proposition p holds in all states between
the state after the last action to which set U decomposes
and the state represented by the first action to which set
V decomposes.

Let us look at example of a decomposition of task Get-To(T,L)1

(truck T moves to location L) using the following method:

Get-To(T,L) → drive(T,L0,L) [∅] (1)

This method decomposes the task directly to an executable
action and does not use any constraints. However, what if the
truck T is already in location L? This can be naturally modeled
using a decomposition method with an empty set (ε) of sub-
tasks – a so called empty method – that uses before constraint
to check that the truck is at the required location (notice that
the constraint is applied to the task itself):

Get-To(T,L) → ε [before(at(T,L), Get-To(T,L))] (2)

Let us present another decomposition method (Fig. 1):

Deliver(T,P,L1,L2)→Get-To(T,L1), pick-up(T,P,L1),

Get-To(T,L2), drop-off(T,P,L2) [C]

C = {Get-To(T,L1) ≺ pick-up(T,P,L1) ≺ Get-To(T,L2)

≺ drop-off(T,P,L2),

between(pick-up(T,P,L1), loaded(T,P),drop-off(T,P,L2))}

(3)

This method is totally ordered and uses a between constraint
checking that the package is constantly loaded on the truck
between actions pick-up() and drop-off(). This is important as
due to task interleaving (explained later) other actions may be
inserted while the task Deliver() is executed.

The before constraints can be added to sub-tasks to model
additional conditions specific for the decomposition method.
For example we might have a second method that describes
the decomposition of the task Deliver() for hazardous pack-
ages. This new method might have additional before con-
straints for actions pick-up() and drop-off() that require a
safety team to be present: before(at(L1,Safety),pick-up(T,P,L1))
before(at(L2,Safety),drop-off(T,P,L2))

Let us now discuss the after constraint. It is important to
highlight that the after constraint is not the same as an effect
of an action. The after constraint only checks that something
is true after a task is completed. Let us provide an example of
task Get-To-Refuel representing a combined activity of getting

1As usual in planning, we allow attributes in tasks. These attributes are
substituted by constants describing specific objects, which is called grounding.
For simplicity, we assume everything grounded in our formal definitions.

to a location and refueling gas. The after condition is used to
check that the truck is out of gas after movement:

Get–To–Refuel(T,L) → drive(T,L1,L),

refuel(T,L) [C]

C = {drive(T,L1,L) ≺ refuel(T,L),

after(not(hasgas(T)), drive(T,L1,L),

before(at(L,GasStation), refuel(T,L))}

(4)

III. HIERARCHICAL PLANNING VIA THE TEXTBOOK
MODEL

In this section we will describe the Textbook formalism and
we will show the challenges that empty methods present to
this formalism. First, let us define a task network [4].

Get-To(T,L1)

drive(T,L1,L2)

Deliver(T,P,L1,L2)

Get-To(T,L2)

C={}

C1=Get-to(T,L1) < pick-up
<Get-To(T,L2) < drop-off
between(pick-up,
loaded(T,P), drop-off)

no-op

Get-To(T,L2)

no-op

pick-up(T,P,L1)

drop-off(T,P,L2)

C2=no-op < pick-up <Get-
To(T,L2) < drop-off
before(at(T,L1),no-op)
between(pick-up,
loaded(T,P), drop-off)

C3=no-op < pick-up
<drive < drop-off
before(at(T,L1),no-op)
between(pick-up,
loaded(T,P), drop-off)

pick-up(T,P,L1) pick-up(T,P,L1)

drop-off(T,P,L2) drop-off(T,P,L2)

Fig. 2. Example of network decomposition

A Task network is a pair w = (U,C), where U is a set of
tasks2 and C is a set of constraints as described in Section
II. Task network is primitive if every task in it represents an
action. Let w = (U,C) be a task network, t ∈ U a task, and m
an instance of method decomposing task t into subtasks(m)
with constraints constr(m). We can apply the method to a
task network creating a new task network:

δ(w, t,m) = ((U \{t})∪subtasks(m), C ′∪constr(m)) (5)

where C ′ is obtained from C by the following modifications:
• For precedence constraints containing t, we replace t with

subtasks(m), i.e., ∀t′ ∈ subtasks(m): t ≺ v is replaced
by t′ ≺ v and v ≺ t is replaced by v ≺ t′.

• For before, between, and after constraints on a subset of
tasks U ′ which contains t, we replace U ′ with (U ′ −
{t}) ∪ subtasks(m).

Let us now define the hierarchical planning problem [4].
Given planning domain model D = (P, T,M), where P is a
set of propositions, T is a set of tasks (including actions), and
M is a set of decomposition methods, a hierarchical planning
problem is formulated as a triple (s0, w,D), where s0 is the
initial state and w is the initial (goal) task network. A solution
to the hierarchical planning problem is a sequence of actions
(plan) π = ⟨a1, a2, . . . , ak⟩ executable from state s0 (each ai

2It may happen that the task network contains several identical tasks so it
is actually a multi-set of tasks. We assume that tasks are uniquely indexed to
distinguish between occurrences of the same task.



is applicable to state si−1, where si is a state after applying
action ai). These actions are from the primitive task network
w′ = ({a1, a2, . . . , ak}, C ′) which has been obtained from w
by application of decomposition methods:

w′ = δ(δ(. . . δ(δ(w, t1,m1), t2,m2), . . . ), tn,mn).
Moreover, the constraints C ′ must be satisfied by plan π as
follows:

• ai ≺ aj : i < j,
• before(p, U): p ∈ smin{i|ai∈U}−1,
• after(p, U): p ∈ smax{i|ai∈U},
• between(U, p, V ): ∀j,max{i|ai ∈ U} ≤ j <

{min{i|ai ∈ V } : p ∈ sj .
One may notice that the above formalism has a problem

with empty methods that have state constraints or that decom-
pose a task participating in some constraints. The problem is
that function δ simply removes the task from the task network
and from all constraints. Assume the following empty method:

E → ε [C], C = {before(p,E)} (6)

If this method is applied to a task network, it adds the before
constraint but as the task E disappears from the network, it is
not clear to which state the constraint should be applied – the
constraint in the network looks as before(p,∅).

IV. NO-OP BASED MODEL

We have shown that the Textbook formalism does not
correctly handle empty methods. In this section, we propose
a modification of the model such that it works well. The idea
is that empty methods become regular methods by adding a
no-op() action. The no-op() action is an action that does not
modify the world state and is applicable to any state. Formally,
the preconditions and effects of the no-op() action are empty
sets. Here is an example of modified empty method (6):

E → no-op() [C]C = {before(p,no-op() )} (7)

The no-op() action serves as a marker in the plan for state
and precedence constraints. As these actions were not part of
the original planning domain model, they need to be removed
from the plan after checking all the constraints.

Fig. 2 shows a visual decomposition of task Deliver (we
omitted some task parameters if it was clear to which tasks
we refer). We begin with a task network w = (U,C),
where U contains one task Deliver and C are its constraints.
We pick this task and use the decomposition method (3).
This creates a new task network w1 = (U1, C1) with four
tasks and new constraints shown in the picture. We continue
the decomposition until we get to a primitive task network
w3 = (U3, C3). Then we find an ordering of the actions that
satisfies the ordering constraints (in our example from top
to bottom). After omitting the no-op() action we get a plan
π = ⟨pick-up,drive,drop-off⟩ that solves the original problem.

The model with no-op actions works well for planning,
where the extra no-op actions can be easily removed from
the obtained plan. However, this approach will not work
for hierarchical plan verification. We will first define plan

verification problem more precisely and then we will explain
why the no-op actions cannot be used there naturally.

V. HIERARCHICAL PLAN VERIFICATION PROBLEM

The hierarchical plan verification problem is defined as a
somehow reverse problem to the planning problem. Given a
domain model D = (P, T,M), the hierarchical plan verifi-
cation problem is formulated as a tuple (s0, g, π,D), where
s0 is the initial state, g is a task network representing the
goal task, and π is a plan. A solution to the verification
problem is a yes/no answer to the question, whether π is a
solution for the planning problem (s0, g,D). In other words,
we are asking whether plan π can be obtained from task
network g using decomposition methods M . Sometimes, the
goal network is not given and part of the verification problem
is also identifying the goal task network consisting of a
certain compound task [11]. This problem can be seen as
a problem of recognizing which task is being executed by
observing a sequence of actions. Now, if we use the no-op
based modification of the domain model, there is an issue with
hierarchical plan verification as the no-op actions are not part
of the plan to be verified. One can try to insert them in the plan
to be verified, but obviously it is not clear to which locations
the no-op actions should be placed. Therefore, we propose a
novel approach to semantics of hierarchical planning models
that covers both planning and plan verification problems.

VI. INDEX-BASED MODEL

In this section, we propose the index-based semantics for
hierarchical planning models. This semantics is based on an
idea of assigning two indexes to each task t, start(t) and
end(t), indicating the order number of the first and last action
to which the task t decomposes. If the task does not decompose
to any real action, which is the case of applying an empty
method, the index will be pointing to a certain state between
two actions (this is where the no-op action would be placed).
We call these indexes half-indexes. Obviously, task indexes are
unknown until a complete plan is obtained so we will represent
them as variables in the style of constraint satisfaction. The
initial domain of these variables will be a set {0.5, 1, 1.5 . . . }.
The integers represent positions of real actions in the plan,
while the “half-numbers” represent the positions in the plan
for empty tasks.

Let us now reformulate the notion of task network and
application of a method to task network using the indexes. A
Task network is a pair w = (U,C), where U is a set of tasks
annotated by indexes (variables) start and end and C is a set
of constraints, which are versions of constraints described in
Section II working with indexes rather than tasks (see below).
Let w = (W,C) be a task network, t ∈ W a task, and m
an instance of method decomposing task t into subtasks(m)
with constraints constr(m). We can apply the method to a
task network creating a new task network:

δ(w, t,m) = ((W \{t})∪subtasks(m), C∪constr(m)∪{c})
(8)



For each new task t′ ∈ subtasks(m) we also cre-
ate two variables start(t′) and end(t′) with initial do-
mains {0.5, 1, 1.5, . . . }. The constraint c connects these vari-
ables with the variables for (non-empty) task t as follows:
start(t) = min{start(t′)|t′ ∈ subtasks(m)} and end(t) =
max{end(t′)|t′ ∈ subtasks(m)}. If the method is empty, i.e.,
subtasks(m) = ∅ we will add a constraint start(t) = end(t)
and we will reduce the domain of variables start(t) and
end(t) to half-numbers {0.5, 1.5, 2.5, . . . }. constr(m) are
method constraints represented using task indexes as follows:

• Ti ≺ Tj : ⌊end(Ti)⌋ < ⌈start(Tj)⌉,
• before(p, U): before(p, ⌈start(U)⌉),
• after(p, U): after(p, ⌊end(U)⌋),
• between(U, p, V ): between(⌊end(U)⌋,p,⌈start(V)⌉),

where start(U) = min{start(t′)|t′ ∈ U}, which is modelled
using a new variable whose value equals the value of the
formula. Similarly, end(U) = max{end(t′)|t′ ∈ U}. The use
of the ceiling (⌈⌉) and floor (⌊⌋) function is important due to
the half-numbers (see below).

Notice that when modifying the task network, we only
remove the decomposed task while keeping its constraints and
start and end indexes. We also connect the indexes of the
removed task with those for newly added sub-tasks (constraint
c). This way, we can propagate information about actions
belonging to a given task after obtaining a complete plan.

A primitive task network w′ = (U,C), is a solution to the
planning problem (s0, w,D) if w′ has been obtained from w
by application of decomposition methods, actions in U can be
linearly ordered to a plan π =< a1, a2, . . . , ak > executable
from state s0 (k is plan length) and all task indexes can be
instantiated while satisfying all the constraints:

• start(t) ≤ k + 0.5, end(t) ≤ k + 0.5,
• ∀i : start(ai) = end(ai) = i (action position in plan),
• before(p, I): p ∈ sI−1, after(p, I): p ∈ sI ,
• between(I, p, J): ∀l, I ≤ l < J : p ∈ sl.

Specifically, notice that all empty tasks are mapped to half-
numbers so these tasks are located between real actions. This
is similar to having a no-op action there (index 0.5 models
no-op at the beginning of plan, and (k+0.5) models no-op at
the end of plan). For example, if the index of empty task is 3.5
then its before and after constraints are checked in state s3
(3 = ⌈3.5⌉ − 1 = ⌊3.5⌋), the task is properly placed between
actions a3 and a4 (⌊3⌋ < ⌈3.5⌉, ⌊3.5⌋ < ⌈4⌉), and the task
can be properly ordered with another empty tasks placed at
the same location (⌊3.5⌋ < ⌈3.5⌉).

The proposed formalism models the hierarchical planning
problem and during task decomposition, it does not require
rewriting the set of constraints as it rather adds new con-
straints. Also, because it models the task network using a
constraint satisfaction problem, it is possible to detect some
inconsistencies (via constraint propagation) earlier than ob-
taining the primitive task network. Moreover, it does not
require adding no-op actions to model empty tasks explicitly,
so the proposed index-based semantics can be used for plan
verification over the original plans [12].

VII. COMPARISONS WITH OTHER MODELS

In this section we will compare the proposed formalism with
other models. The Erol formalism [5] introduces two types of
compound tasks: a regular compound task and a goal task.
They define goal task as properties that we wish to make true
in the world. They define Compound tasks as tasks that denote
desired changes that involve several goal tasks and primitive
tasks. They then describe how to use empty methods only for
goal task but not for compound tasks. As for constraints it
allows all four types of constraints but it only allows for one
task to be part of the constraints (two for between constraints),
not multiple tasks as our model.

Compared to the formalism of the Textbook model [4] our
formalism uses the same constraints but we showed how to use
empty methods as it is not clear how one would use empty
methods in their transformation of networks.

The main differences between HDDL [6] and our formalism
are in the constraints. The HDDL before condition requires
that the condition must be true before the entire method. We
allow before conditions for a subset of sub-tasks in the method
not necessarily all of them. Another big difference is when a
before condition is checked. In the formalism provided here we
check the condition in the state immediately preceding the task
(or tasks this condition relates to), but in the HDDL formalism
it is only required that the condition is true sometime before
(we shall call these sometime before conditions) the task starts
(and it could have changed before the task actually executes).
This is because some of the planners handle conditions by
adding a new primitive task before the method with given
conditions. This works just like our conditions in totally
ordered domains but not in partially ordered domains. We
don’t see much practical use for the sometime before condition
as it does not ensure that the condition is true when the
task begins. Another difference is in between conditions that
are not defined in HDDL. The after condition is an intuitive
counterpart to the before condition. While we have provided
its example (4), the after condition is not commonly used. One
use of the after condition could be for checking that something
is true after the goal task. This is akin to a goal state in classical
planning. While HDDL does not support after conditions they
do allow for a goal state to be defined.

VIII. MODIFICATIONS OF MODEL PROPERTIES

In previous sections we described the differences between
some of the formalism describing hierarchical domain models.
In this section we will describe possible transformations of
some of the models properties. This is also useful because not
every planner or verifier is able to handle the full extent of the
models. Often they use some simplification or transformation
of the model into an alternative one or easier one.

One might look at partially and totally ordered domains
and wonder if the partially ordered domains can be trans-
formed into totally ordered domains by trying all the possible
orderings. For example, for a task decomposition T → M,N
we may create two possible decompositions: T → M,N [C],
where C = {M ≺ N} and T → M,N [C], where C = {N ≺



M}. This will not work, because partial ordering allows task
interleaving (Fig. 3) while total ordering does not.

Not every planner or verifier is able to handle all of the
constraints mentioned. In fact only one verifier [12] is able
to handle all four types of constraints. Also most verifiers can
only handle before conditions before the entire method (not for
a subset of sub-tasks). So in this section we want to provide
a couple of transformations between various constraints. For
example, for totally ordered domains we can transform the
before condition on a set of sub-tasks into a before condition
for one sub-task only:

T → M,N,O[C], C = {M ≺ N,N ≺ O, before(p,{N,O})}
(9)

As we know the order of tasks in set {N,O}, the before con-
dition can be applied to sub-task N only: before(p,N). There
is a transformation available to move the before condition in
front of the entire task N (to make it compatible with HDDL)
instead of in front of a sub-task (see Fig. 4), but it requires
adding a new task N ′. This new task has to be added because
there might be another method that decomposes into N that
does not require this precondition. The upper limit of new
tasks created is min(c, t), c is the number of before conditions
and t is the number of sub-tasks. Because if there are more
conditions than tasks then at least two conditions relate to
the same sub-task (using the first procedure of transforming a
before condition from multiple sub-tasks to one).

We can also transform a between condition into a series of
before conditions in totally ordered domains (see (10)).

T → M,N,O, P [C]

C = {M ≺ N,N ≺ O,O ≺ P, between(p,{N,P})}
(10)

The condition must be true between sub-tasks N and P, this
means it must be true before sub-tasks O and P. We can
therefore transform it into two before conditions: before(p,O)
and before(p,P). We could then also transform these to be
before the whole task and not before sub-tasks using the
process described previously.

In totally ordered domains the after condition on a single
sub-task can also be transformed into a before condition on
the following sub-task if there is a following sub-task. So
after(p,N) would be transformed into before(p,O). This cannot
be done on partially ordered domains due to interleaving. If
the after condition is on a set of subtasks we can transform
it to an after condition on one sub-task analogously to the
technique described for before conditions (except we focus on
the last sub-task and not the first).

T T2

a1 b3b2b1 a1

Fig. 3. Task interleaving

T

M N O

Before(p,{N,O})

T

M N' O

Before(p,N')

N'

N

Fig. 4. Example of transformation of before condition

IX. CONCLUSION

In this short paper we proposed a novel semantics for
hierarchical domain models with focus on how to handle
empty methods while keeping extensive constraints. We then
compared it with other formalisms used in hierarchical plan-
ning. Finally we listed some model modifications for different
constraints. We think this is of special interest as not many
of the constrains described are handled by current planners or
verifiers.

X. ACKNOWLEDGMENTS

Research is supported by TAILOR, a project funded by
EU Horizon 2020 research and innovation programme under
GA No 952215. S. Ondrčková is supported by the Charles
University project GA UK number 280122 and by SVV project
number 260 698.

REFERENCES

[1] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in IROS 2011. IEEE, 2011, pp. 1470–1477.

[2] P. Bercher, G. Behnke, M. Kraus, M. Schiller, D. Manstetten, M. Dam-
bier, M. Dorna, W. Minker, B. Glimm, and S. Biundo, “Do it yourself,
but not alone: Companion-technology for home improvement – bringing
a planning-based interactive DIY assistant to life,” Künstliche Intelligenz
– Special Issue on NLP and Semantics, vol. 35, pp. 367–375, 2021.

[3] F. Mohr, M. Wever, and E. Hüllermeier, “ML-plan: Automated machine
learning via hierarchical planning,” Machine Learning, vol. 107, no. 8,
pp. 1495–1515, 2018.

[4] M. Ghallab, D. Nau, and P. Traverso, Automated Planning: theory and
practice. Elsevier, 2004.

[5] K. Erol, J. A. Hendler, and D. S. Nau, “Umcp a sound and complete
procedure for hierarchical task-network planning,” in Aips, 1994, pp.
249–254.

[6] D. Höller, G. Behnke, P. Bercher, S. Biundo, H. Fiorino, D. Pellier,
and R. Alford, “Hddl: An extension to pddl for expressing hierarchical
planning problems,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 06, 2020, pp. 9883–9891.

[7] T. Geier and P. Bercher, “On the decidability of htn planning with
task insertion,” in IJCAI Proceedings-International Joint Conference on
Artificial Intelligence, vol. 22, no. 3, 2011, p. 1955.

[8] R. E. Fikes and N. J. Nilsson, “STRIPS: A new approach to the
application of theorem proving to problem solving,” in IJCAI 1971,
1971, pp. 608–620.

[9] K. Erol, J. A. Hendler, and D. S. Nau, “Complexity Results for HTN
Planning,” Annals of Mathematics and AI, vol. 18, no. 1, pp. 69–93,
1996.

[10] P. Bercher, R. Alford, and D. Höller, “A survey on hierarchical planning
– one abstract idea, many concrete realizations,” in IJCAI 2019. IJCAI,
2019, pp. 6267–6275.

[11] R. Barták, A. Maillard, and R. C. Cardoso, “Validation of hierarchical
plans via parsing of attribute grammars,” in ICAPS. AAAI Press, 2018,
pp. 11–19.

[12] S. Ondrčková, R. Barták, P. Bercher, and G. Behnke, “On heuristics
for parsing-based verification of hierarchical plans with a goal task,”
in Proceedings of the 35th International Florida Artificial Intelligence
Research Society Conference (FLAIRS 2022), 2022.


