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Abstract

Multi-agent pathfinding is the task of navigating a set of mo-
bile agents in a shared environment such that they avoid col-
lisions. Finding an optimal solution in terms of the length
of the plan is known to be a computationally hard problem
(NP-Hard). In general, there are two schools of optimal al-
gorithms: search-based and reduction-based. While search-
based algorithms excel in solving large maps where few con-
flicts can be expected, reduction-based algorithms excel in
smaller instances even when agents interact often. However,
the reduction-based approaches lag behind in large instances,
even with few agents. To mitigate this, a subgraph pruning
method was introduced to prune unnecessary vertices to de-
crease the size of the instance. The pruning is based on the
shortest paths for each agent. In the original study, the authors
randomly selected the shortest routes. In this study, we repli-
cate the overall approach while selecting the initial shortest
path with more care. We provide several approaches for se-
lecting one of the possible shortest paths and experimentally
compare them. We note that when the makespan optimal plan
is needed, not all agents are required to use the shortest path,
as only the longest path dictates the makespan. Using this ob-
servation, we also introduce an approach that selects longer
paths for some agents if it helps to reduce the total number
of interactions between agents. We provide an experimental
comparison of all proposed approaches and show that the lat-
ter performs significantly better, in most cases outperforming
any approach that strictly selects only the shortest path.

Introduction

Multi-agent pathfinding (MAPF) is the task of navigating a
set of mobile agents in a shared environment from their start-
ing location to desired destination locations while avoid-
ing collisions (Stern et al. 2019). This abstract problem has
numerous practical applications in warehousing (Wurman,
D’ Andrea, and Mountz 2008), airplane taxiing (Morris et al.
2016), video game control (Silver 2005), and traffic junc-
tions (Dresner and Stone 2008).

The problem of finding an optimal MAPF solution has
been shown to be computationally hard for a wide range of
cost objectives. Although there exist domain-specific opti-
mal solvers, an alternative popular approach in theoretical
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computer science is to translate hard problems into a well-
established formalism and to use an existing, highly opti-
mized solver for that formalism, for example, the Boolean
Satisfiability Decision Problem (SAT) (Biere et al. 2009).

Related Work

In this paper, the focus is on optimal solvers. In general,
there are two main categories that optimal solvers fall into.

Search-based solvers make use of search algorithms.
The most notable algorithm is Conflict-Based Search
(CBS) (Sharon et al. 2015) and many of its improve-
ments (Boyarski et al. 2015; Gange, Harabor, and Stuckey
2019). CBS plans each agent individually (using single-
agent A*) and examines the solution. If any pair of agents
is conflicting, it can be resolved in two ways — either the
first agent is not allowed in that position at that time, or the
other agent is not allowed in that position at that time. This
creates a binary constraint tree that CBS searches over.

Reduction-based solvers translate the MAPF instance
into a selected established fogmalism. In the literature, trans-
lation to SAT (Bartak and Svancara 2019) or ASP (Acha
et al. 2021) is prominent, but other formalisms also provide
specific advantages described in a survey paper (Surynek
2022). It is known that both search-based and reduction-
based solvers excel in different types of instances (Svancara
et al. 2024). While search-based approaches excel in large
sparse environments, reduction-based approaches excel in
small densely occupied environments. Since reduction-
based approaches have trouble scaling up in large envi-
ronments, improvements have been proposed to mitigate
large maps and remove unneeded vertices, creating a sub-
graph (Husar et al. 2022). In this paper, we build on top of
the subgraph method using reduction to SAT. Both of these
concepts will be explained in more detail in later sections.

Contributions

In this paper, we explore the subgraph method designed to
improve the scalability of reduction-based MAPF solvers
under the makespan objective. To this end, our contributions
are as follows.

We develop in total four different schemes to find the
shortest paths that serve as the starting point for the sub-
graph method. Additionally, since the optimized cost func-



tion is makespan, we develop a scheme that finds the short-
est path for only the critical agent that dictates the makespan
and allows the others to find a longer path, provided that it
minimizes the number of potential conflicts. Lastly, the pro-
posed approaches are experimentally compared. Based on
the measured data, we conclude that a correct path selec-
tion makes a large portion of the instances trivial to solve
optimally without invoking the solver, as the improved path
selection produces a conflict-free plan.

Definitions

A MAPF instance M is a pair (G, A), where G is a graph
G = (V, E) representing the shared environment and A is a
set of mobile agents. An agent a; € A is a pair a; = (si, gi),
where s; € V is the starting location and g; € V is the
destination location of agent a;.

Our task is to find a valid plan ; for each agent a; € A
being a valid path from s; to g;. We use 7;(t) = v to denote
that agent a; is located at the vertex v at the time step ¢. Time
is discrete and at each timestep every agent can either wait at
its current location or move to a neighboring location. Fur-
thermore, we require that each pair of plans m; and 75, ¢ # j
is collision-free. Specifically, we forbid vertex and swapping
conflicts. Vertex conflict occurs when two agents are located
in the same vertex at the same time (i.e. m;(t) = m;(¢)).
Swapping conflict occurs when two agents are moving over
the same edge in the opposite direction at the same time (i.e.
7Ti(t) = 7Tj(t + 1) AN ﬂi(t + 1) = W‘j(t)).

We are interested in makespan optimal solutions.
Makespan refers to the length of a plan. Once an agent ar-
rives at its destination location, it does not disappear. An
agent may move out of the destination location again; how-
ever, a plan ends once all agents are at the destination lo-
cation at the same time. This means that the length of the
plan |m;| is the same for all agents. Another common cost
function is sum of costs (Sharon et al. 2011). Note that find-
ing an optimal solution for either of the cost functions is an
NP-hard problem (Yu and LaValle 2013; Surynek 2015).

Solving MAPF via Reduction to SAT

As mentioned in the Introduction, this paper builds on top
of existing SAT-based makespan optimal solver (Bartak and
Svancara 2019) and subgraph method (Husér et al. 2022). In
this section, we describe both in more detail.

SAT Encoding

For each agent a; in timestep ¢, Boolean variables
At(a;,v,t) and Pass(a;, u,v,t) are created to represent the
location at the vertex v and the movement over edge (u, v),
respectively. Given a bound on the makespan T, the vari-
ables are created for each timestep {0,...,7}. A formula
restricting the movement of the agents is created and for-
warded to an underlying SAT solver. If the SAT solver finds
a solution, there is a solution to the MAPF instance. If the
formula is unsatisfiable, the 7" is increased by one, and a new
formula is constructed. The initial value of 7" is the lower
bound on the makespan — the longest of the distances be-
tween s; and g;, formally, LB,,,s = maxg,ca dist(s;, g;).
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Iteratively increasing 7' guarantees finding a makespan-
optimal solution.
The following formulas describe the constraints in CNF.

At(a, 54,0) (L

At(aiagi7T> (2)

Yo,u € Vyu # v —At(a;, v, t) V - At(a;, u, t) 3)

At(a;,v,t) = \/(U’u)eEPass(ai,v,uJ) 4)

Pass(a;,v,u,t) = At(a;,u,t+1) (5)

Va;,a; € A, a; # a; : —At(a;,v,t) V -At(a;,v,t) (6)
Va;,a; € A,V (v,u) € E:

€AY, o

—Pass(a;,v,u,t) V -Pass(a;, u,v,t)

The unit clauses 1 and 2 ensure that each agent starts at
its start location and ends at the destination location, respec-
tively. Clauses 3 ensure that each agent is located on the map
just once and is not duplicated. Clauses 4 and 5 ensure that
the movement of the agent follows a path; specifically, if
an agent is present in a vertex, it leaves through one of the
edges, and if an agent is moving over an edge, it arrives at
the corresponding vertex in the next timestep. Lastly, 6 and
7 prohibit vertex and swapping conflicts, respectively.

The Subgraph Method

The subgraph method (Husér et al. 2022) is a framework de-
signed to improve the scalability of reduction-based solvers
by removing vertices from the graph. Given a MAPF in-
stance M = (G, A) and a set of ground vertices, it creates
a relaxed instance My, ,,,, where k is the distance from the
ground vertices and m is the allowed cost to be added to
the L B,,xs. In the original paper, the ground vertices are se-
lected as vertices that are on a randomly selected shortest
path from s, to g; for each agent, then k dictates how many
vertices are added to the subgraph, while m dictates the al-
lowed cost T'. See Figure 1 for an example with one agent.
Note that the increased k draws contours around the selected
ground vertices which fall into k = 0.

In the original paper, four strategies to iteratively explore
different relaxed instances were described. In this paper, we
will focus only on the ones that have been proven to pro-
duce makespan-optimal solutions. The baseline strategy B
always takes the whole original graph G (using some suf-
ficiently large k,,,.) and only iteratively increases m. This
strategy is equivalent to the vanilla SAT-based makespan-
optimal solvers. The strategy P starts with the smallest pos-
sible instance My . In case of unSAT, k is iteratively in-
creased until k. is reached. Only after that, m increases
by one and k is restarted again at 0. It is proven that such a
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Figure 1: An instance with a single agent. Each vertex is
labeled into which k-restricted graph it belongs. The black
square is an impassable obstacle. Figure taken from (Husar
et al. 2022).

strategy guarantees finding an optimal solution and has been
experimentally shown to outperform the baseline approach.

A follow-up study (Svancara et al. 2023) focused on se-
lecting more than a single shortest path for each agent to
the set of ground vertices. However, the results show that in-
creasing the number of vertices prolonged the computation
time. Therefore, we will make use of the initial strategy of
selecting just a single path for each agent.

Path Selection

The original study on the subgraph method chooses the ini-
tial ground vertices as any of the shortest paths for each
agent. Given that these vertices are never changed in the al-
gorithm, a more careful selection should be made. In this
paper, we describe several schemes for selecting the set of
vertices for each agent. Note that each scheme is based on
some path from s; to g;, since the vertices need to ensure
that each agent still can reach its goal.

Biased Random The baseline scheme comes from the
original paper, where any shortest path may be selected.
However, exploring the code shows that the shortest path
algorithm explores neighboring vertices in fixed order, left,
down, right, and up !, thus preferring paths that move in
a straight line as much as possible, and all agents tend to
navigate around obstacles in the same direction. This phe-
nomenon is most noticeable in the empty parts of the map.
We refer to this scheme as Biased random or Bia for short.

Random To mitigate the biased factor of the previous
scheme, we implemented an algorithm that selects truly ran-
dom shortest paths for each agent. We refer to this scheme
as Random or Ran for short.

Minimizing Crossing A better path selection may influ-
ence the complexity of the solving, as is demonstrated in
Figure 2. Here, the blue agent has two possible shortest
paths. Choosing the black one, the relaxed instance M o
is solvable. Selecting the blue path makes M o unsolvable,
and only after two iterations of the P strategy, Mo g is solv-
able.

Therefore, we propose a scheme that tries to find for each
agent the shortest path while crossing already selected paths

!The experiments are performed on a 4-connected grid graphs
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Figure 2: An example instance where the blue agent has
two choices of the shortest path. If the blue path is chosen,
the proposed strategies perform worse. Figure taken from
(Husaér et al. 2022).

the fewer number of times. This is achieved by the single-
agent A* algorithm with a tie-breaking rule. The first mini-
mized cost is the true distance, while the second minimized
cost (i.e. tie-breaking) is the number of vertices selected by
other agents. In the example in Figure 2, selecting the path
for the blue agent, after the green and orange agents have
selected their paths, it is guaranteed that the black path is
selected.

Note that this algorithm is greedy in the sense that the
agents select their paths in a fixed order. The algorithm does
not minimize the global number of crossings, as that is a
computationally hard problem, as it is related to the crossing
number (Garey and Johnson 1983). We refer to this scheme
as Without crossing or WCr for short.

Minimizing Conflicts The previous scheme may search
for paths that do not cross unnecessarily. Since the MAPF
problem has a time dimension, it is only required that the
agents not meet at the same time. Given a shortest path,
each vertex is associated with a time step when the agent
is required to be there. Therefore, we upgrade the previ-
ous algorithm to first minimize the true distance, and second
minimize the number of vertices that would cause a colli-
sion, taking the time into account. We refer to this scheme
as Without conflicts or WCo for short.

Extended Minimizing Conflicts Given that the optimized
cost function is makespan, it is not strictly necessary for all
agents to select the shortest path. Recall that makespan is
dictated by the longest plan. Using this information, we de-
sign a path selection scheme that first finds the lower bound
on the makespan LB,,is. Again, we find paths for each
agent in a fixed order using A*, however, the optimization
cost is changed. First, minimize the number of positions that
would cause a conflict, taking the time into account; second,
minimize the true distance, while not allowing any agent to
find a path longer than L B,,s. Note that since LB, is al-
ready determined, we are guaranteed to find a path for each
agent, preferring the paths that cross other agents in time
the least number of times. The order of the agents is taken
in the decreasing order of dist(s;, g;). The search-space of
the A* consists both of space and time, as exploring a ver-
tex in different time may lead to fewer conflicts, thus lower
cost. We refer to this scheme as Extended without conflicts
or ExWCo for short. Comparing ExWCo with the subgraph
method to Prioritized Planning (Silver 2005), there are two
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Size. Type | B | g Ran WCr WCo ExWCo
empty 0.63 | 0.785 0.795 0.7 0.79 1
maze 0.714 | 0.714 0.77 0.745 0.783 0.925
random | 0.985 | 099 0.985 0.985 0.985 1
room 0.875 | 0.89 0.85 0.835 0.865 0.87
empty 0.1 0.41 0.38 0.355 0.375 1
maze 0.134 | 0.263 0.279 0.268 0.274 0.983
random | 0.077 | 0.332 0.316 0.281 0.332 1
room 0.2 0455 043 0.38 0.435 1
empty 0 0.175  0.19 0.2  0.145 1
128 maze 0 0.026 0.037 0.026 0.021 1
random | 0.02 | 0.175 0.16 0.15 0.14 1
room 0.025 | 0.17 0.19 0.175 0.175 1

Table 1: Success rate of schemes using strategies B and P.

significant differences. First, the length of the allowed path
to be found is bounded by LB,,ks; second, ExWCo allows
us to find conflicting paths with the promise from the sub-
graph method that these conflicts will be resolved, producing
a complete (and optimal) algorithm.

Empirical Evaluation

To test and compare the proposed path selection schemes,
we reimplement the subgraph method and reduction-
based MAPF solver. The used underlying SAT solver is
Kissat (Biere et al. 2020). All of the code is implemented
in C++ and run on a PC with AMD Ryzen™ 9 5900X CPU
and a limit of 56 GB of RAM. The code and more detailed
results are provided in online repository?.

Instances

The test instances are inspired by the well-known MAPF
benchmark set (Stern et al. 2019). We selected map types
empty, maze, random, and room with increasing sizes of
32 x 32,64 x 64, and 128 x 128. We start with 5 randomly
placed agents to create an instance; if the instance is solved
in a given timeout of 30s, additional 5 agents are introduced
to produce the next instance. Each setup was performed 10
times with a new random seed, i.e. placement of agents. All
of the proposed schemes were tested on the same instances.

Results

The measured success rate is shown in Table 1. Instances
that were not solved by any strategy or path selection scheme
were not included. From the table, we can see that the
ExWCo is the most successful scheme in most cases, be-
ing able to solve 100 agents in all map sizes. For the maps
of size 32 x 32, the difference between the schemes is the
lowest. The easiest map type was random, while the maze is
the most difficult one. Room size 32 x 32 is the only map
where the Bia scheme outperforms the ExWCo, on average
the most agents solved being 95 and 93, respectively. All of
the schemes are heuristic and depend on the order of agent

*https://github.com/husarma/diplomka kissat
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Size Type . P
Bia Ran WCr WCo ExWCo
empty | 0.05 0.065 0.075 0.07 1
maze | 0.006 0.012 0.025 0.025 0.845
random | 0.04 0.045 0.065 0.035 0.6
room | 0.025 0.03 0.035 0.035 0.55
empty | 0.095 0.105 0.135 0.1 1
maze | 0.028 0.034 0.028 0.034 0972
random | 0.031 0.036 0.082 0.046 1
room | 0.035 0.06 0.04 0.035 1
empty | 0.14 0.15 0.18 0.115 1
128 maze | 0.021 0.032 0.021 0.016 1
random | 0.095 0.085 0.075 0.05 1
room | 0.055 0.095 0.065 0.05 1

Table 2: Ratio of instances solved in the preprocess phase.

selection. If the path selection does not produce a conflict-
free solution, the SAT-based MAPF solver needs to resolve
the remaining conflicts. In some cases, the random algo-
rithm managed to find better initial paths that were either
conflict-free or were easier for the MAPF solver to handle.
Determining which conflicts are easier for the MAPF algo-
rithm to handle is an open question. However, as can be seen,
loosening the restriction on the path length in ExWCo helps
tremendously on larger maps. As the map size grows, the
ExWCo shows a superior success rate to all other schemes,
while all of the others perform comparatively with a success
rate only up to 20%.

Together, ExXWCo solved 2284 instances, while the sec-
ond most successful scheme Bia solved 1048. The improved
performance of P over B is expected and in accordance with
the original subgraph paper.

If the selected paths are conflict-free, it is guaranteed to
be valid and optimal solution and the underlying solver is
not required to be invoked. Table 2 shows the ratio of all
instances that were solved without invoking the SAT solver.
From the table, it can be seen that the strength of ExWCo lies
in being able to solve the instance without the need of the
solver. If the solver is needed to find a solution, the schemes
have a similar success rate. However, as ExWCo produces
longer and non-conflicting paths, it tends to keep more ver-
tices in the subgraph. This may be sometimes harder for the
solver to deal with, as can be seen in Table 1, size 32 x 32,
room. On the other hand, as the size increases, ExWCo is
able to solve all of the instances in the preprocess phase,
while the other schemes are unable to do so. If the prepro-
cess phase does not produce a solution, the underlying solver
is also unable to solve it in the given timeout as those in-
stances are simply too big (around hundred agents).

Conclusion

We improved the subgraph method for reduction-based
MAPF solvers by selecting better initial paths for each
agent. We showed that when optimizing makespan, many
instances are solvable optimally in the preprocessing phase.
In future work, we aim to explore the subgraph method for
the sum of costs objective function.
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